Что такое Томита-парсер, как Яндекс с его помощью понимает естественный язык, и как вы с его помощью сможете извлекать факты из текстов
6 мин
Мечта о том, чтобы машина понимала человеческий язык, завладела умами еще когда компьютеры были большими, а их производительность – маленькой. Главная проблема на пути к этому заключается в том, что грамматика и семантика естественных языков слабо поддаются формализации. Кроме того, от языков программирования их отличает присутствие многозначности.
Конечно, мечта о полноценной коммуникации с компьютером на естественном языке пока еще далека от полноценной реализации примерно настолько же, как и мечта об искусственном интеллекте. Однако некоторые результаты есть уже сейчас: машину можно научить находить нужные объекты в тексте на естественном языке, находить между ними связи и представлять необходимые данные в формализованном виде для дальнейшей обработки. В Яндексе уже достаточно давно применяется такая технология. Например, если вам придет письмо с предложением о встрече в определенном месте и в определенное время, специальный алгоритм самостоятельно извлечет нужные данные и предложит внести ее в календарь.

Вскоре мы планируем отдать эту технологию в open source, чтобы любой мог пользоваться ей и развивать ее, приближая тем самым светлое будущее свободного общения между человеком и компьютером. Подготовка к открытию исходных кодов уже началась, но процесс этот не такой быстрый, как нам бы хотелось, и, скорее всего, продлится до конца этого года. За это время мы постараемся как можно больше рассказать о своем продукте, для чего запускаем серию постов, в рамках которой расскажем об устройстве инструмента и принципах работы с ним.
Называется технология Томита-парсер, и по большому счету, любой желающий может воспользоваться ей уже сейчас: бинарные файлы доступны для скачивания. Однако прежде чем пользоваться технологией, нужно научиться ее правильно готовить.
Конечно, мечта о полноценной коммуникации с компьютером на естественном языке пока еще далека от полноценной реализации примерно настолько же, как и мечта об искусственном интеллекте. Однако некоторые результаты есть уже сейчас: машину можно научить находить нужные объекты в тексте на естественном языке, находить между ними связи и представлять необходимые данные в формализованном виде для дальнейшей обработки. В Яндексе уже достаточно давно применяется такая технология. Например, если вам придет письмо с предложением о встрече в определенном месте и в определенное время, специальный алгоритм самостоятельно извлечет нужные данные и предложит внести ее в календарь.

Вскоре мы планируем отдать эту технологию в open source, чтобы любой мог пользоваться ей и развивать ее, приближая тем самым светлое будущее свободного общения между человеком и компьютером. Подготовка к открытию исходных кодов уже началась, но процесс этот не такой быстрый, как нам бы хотелось, и, скорее всего, продлится до конца этого года. За это время мы постараемся как можно больше рассказать о своем продукте, для чего запускаем серию постов, в рамках которой расскажем об устройстве инструмента и принципах работы с ним.
Называется технология Томита-парсер, и по большому счету, любой желающий может воспользоваться ей уже сейчас: бинарные файлы доступны для скачивания. Однако прежде чем пользоваться технологией, нужно научиться ее правильно готовить.
В этой статье мы ищем (и, что характерно, находим!) критический баг в CoreGraphics в iOS. Сразу скажу, что на полноценную уязвимость этот баг конечно не тянет — его эксплуатация не приводит, например, к arbitrary code execution. Однако этот баг позволяет аварийно завершать приложения которые используют WebKit: Mobile Safari, Google Chrome для iOS, всяческие почтовые клиенты и т.п., что тоже может быть полезно для хакера в некоторых ситуациях. Итак, приступим к поискам.



Здравствуйте, уважаемые Хабражители!

