Как стать автором
Обновить
-6
Alexey Schröder @schroederread⁠-⁠only

Пользователь

Отправить сообщение

Латентно-семантический анализ

Время на прочтение4 мин
Количество просмотров99K
Как находить тексты похожие по смыслу? Какие есть алгоритмы для поиска текстов одной тематики? – Вопросы регулярно возникающие на различных программистских форумах. Сегодня я расскажу об одном из подходов, которым активно пользуются поисковые гиганты и который звучит чем-то вроде мантры для SEO aka поисковых оптимизаторов. Этот подход называет латентно-семантический анализ (LSA), он же латентно-семантическое индексирование (LSI)

Латентно-семантический анализ

Читать дальше →
Всего голосов 104: ↑101 и ↓3+98
Комментарии27

Алгоритм «diamond-square» для построения фрактальных ландшафтов

Время на прочтение12 мин
Количество просмотров118K
Карта игры Minecraft, созданная с помощью приложения CartographДумаю, многие знакомы с весьма необычной игрой Minecraft (справа — пример сгенерированной в ней карты), в которой игрок находится на (практически) бесконечной поверхности Земли и может исследовать окружающий мир с минимальными ограничениями.

Как же автору игры, Notch'у, удалось добиться подобного сходства его случайных «миров» с земными просторами? В этом топике я как раз и рассмотрю один из способов построить искусственный ландшафт такого рода (и вскользь упомяну пару других способов), а также расскажу о моем небольшом усовершенствовании этого алгоритма, позволяющем значительно увеличивать размеры ландшафта без заметных потерь в производительности.

Внутри вас ждет несколько схем и красивых картинок, довольно много букв и ссылка на пример реализации алгоритма.

Читать дальше →
Всего голосов 148: ↑147 и ↓1+146
Комментарии58

Trie, или нагруженное дерево

Время на прочтение4 мин
Количество просмотров100K
Здравствуй, Хабрахабр. Сегодня я хочу рассказать о такой замечательной структуре данных как словарь на нагруженном дереве, известной также как префиксное дерево, или trie.

Что это ?


Нагруженное дерево — структура данных реализующая интерфейс ассоциативного массива, то есть позволяющая хранить пары «ключ-значение». Сразу следует оговорится, что в большинстве случаев ключами выступают строки, однако в качестве ключей можно использовать любые типы данных, представимые как последовательность байт (то есть вообще любые).
Читать дальше →
Всего голосов 78: ↑73 и ↓5+68
Комментарии29

Моноиды и их приложения: моноидальные вычисления в деревьях

Время на прочтение20 мин
Количество просмотров24K
Приветствую, Хабрахабр. Сегодня я хочу, в своём обычном стиле, устроить сообществу небольшой ликбез по структурам данных. Только на этот раз он будет гораздо более всеобъемлющ, а его применения и практичность — простираться далеко в самые разнообразные области программирования. Самые красивые применения, я, конечно же, покажу и опишу непосредственно в статье.

Нам понадобится капелька абстрактного мышления, знание какого-нибудь сбалансированного дерева поиска (например, описанного мною ранее декартова дерева), умение читать простой код на C#, и желание применить полученные знания.

Итак, на повестке сегодняшнего дня — моноиды и их основное применение для кеширования вычислений в деревьях.

Моноид как концепция


Представьте себе множество чего угодно, множество, состоящее из объектов, которыми мы собираемся манипулировать. Назовём его M. На этом множестве мы вводим бинарную операцию, то есть функцию, которая паре элементов множества ставит в соответствие новый элемент. Здесь и далее эту абстрактную операцию мы будем обозначать "⊗", и записывать выражения в инфиксной форме: если a и b — элементы множества, то c = ab — тоже какой-то элемент этого множества.

Например, рассмотрим все строки, существующие на свете. И рассмотрим операцию конкатенации строк, традиционно обозначаемую в математике "◦", а в большинстве языков программирования "+": "John""Doe" = "JohnDoe". Здесь множество M — строки, а "◦" выступает в качестве операции "⊗".
Или другой пример — функция fst, известная в функциональных языках при манипуляции с кортежами. Из двух своих аргументов она возвращает в качестве результата первый по порядку. Так, fst(5, 2) = 5; fst("foo", "bar") = "foo". Безразлично, на каком множестве рассматривать эту бинарную операцию, так что в вашей воле выбрать любое.

Далее мы на нашу операцию "⊗" накладываем ограничение ассоциативности. Это значит, что от неё требуется следующее: если с помощью "⊗" комбинируют последовательность объектов, то результат должен оставаться одинаковым вне зависимости от порядка применения "⊗". Более строго, для любых трёх объектов a, b и c должно иметь место:
(ab) ⊗ c = a ⊗ (bc)
Легко увидеть, что конкатенация строк ассоциативна: не важно, какое склеивание в последовательности строк выполнять раньше, а какое позже, в итоге все равно получится общая склейка всех строк в последовательности. То же касается и функции fst, ибо:
fst(fst(a, b), c) = a
fst(a, fst(b, c)) = a
Цепочка применений fst к последовательности в любом порядке всё равно выдаст её головной элемент.

И последнее, что мы потребуем: в множестве M по отношению к операции должен существовать нейтральный элемент, или единица операции. Это такой объект, который можно комбинировать с любым элементом множества, и это не изменит последний. Формально выражаясь, если e — нейтральный элемент, то для любого a из множества имеет место:
ae = ea = a
В примере со строками нейтральным элементом выступает пустая строка "": с какой стороны к какой строке её ни приклеивай, строка не поменяется. А вот fst в этом отношении нам устроит подлянку: нейтральный элемент для неё придумать невозможно. Ведь fst(e, a) = e всегда, и если ae, то свойство нейтральности мы теряем. Можно, конечно, рассмотреть fst на множестве из одного элемента, но кому такая скука нужна? :)

Каждую такую тройку <M, ⊗, e> мы и будем торжественно называть моноидом. Зафиксируем это знание в коде:
public interface IMonoid<T> {
    T Zero { get; }
    T Append(T a, T b);
}

Больше примеров моноидов, а также где мы их, собственно, применять будем, лежит под катом.
Читать дальше →
Всего голосов 127: ↑124 и ↓3+121
Комментарии27

Метод имитации отжига

Время на прочтение7 мин
Количество просмотров51K
Дорогие друзья, доброго времени суток!

Уже не один раз здесь обсуждалась такая разновидность оптимизационных алгоритмов, как генетические алгоритмы. Однако, существуют и другие способы поиска оптимального решения в задачах с многими степенями свободы. Один из них (и, надо сказать, один из наиболее эффективных) — метод имитации отжига, о котором здесь ещё не рассказывали. Я решил устранить эту несправедливость и как можно более простыми словами познакомить вас с этим замечательным алгоритмом, а заодно привести пример его использования для решения несложной задачки.

Я понимаю, почему генетические алгоритмы пользуются такой большой популярностью: они очень образны и, следовательно, доступны для понимания. В самом деле, несложно и крайне интересно представить решение некой задачи, как реальный биологический процесс развития популяции живых существ с определёнными свойствами. Между тем, алгоритм отжига также имеет свой прототип в реальном мире (это понятно и из самого названия). Правда, пришёл он не из биологии, а из физики. Процесс, имитируемый данным алгоритмом, похож на образование веществом кристаллической структуры с минимальной энергией во время охлаждения и затвердевания, когда при высоких температурах частицы хаотично движутся, постепенно замедляясь и застывая в местах с наименьшей энергией. Только в случае математической задачи роль частиц вещества выполняют параметры, а роль энергии — функция, характеризующая оптимальность набора этих параметров.

Читать дальше →
Всего голосов 73: ↑71 и ↓2+69
Комментарии31

Поиск подстроки и смежные вопросы

Время на прочтение13 мин
Количество просмотров122K
Здравствуйте, уважаемое сообщество! Недавно на Хабре проскакивала неплохая обзорная статья о разных алгоритмах поиска подстроки в строке. К сожалению, там отсутствовали подробные описания каких либо из упомянутых алгоритмов. Я решил восполнить данный пробел и описать хотя бы парочку тех, которые потенциально можно запомнить. Те, кто еще помнит курс алгоритмов из института, не найдут, видимо, ничего нового для себя.
Читать дальше →
Всего голосов 89: ↑84 и ↓5+79
Комментарии18

B-tree

Время на прочтение6 мин
Количество просмотров209K

Введение


Деревья представляют собой структуры данных, в которых реализованы операции над динамическими множествами. Из таких операций хотелось бы выделить — поиск элемента, поиск минимального (максимального) элемента, вставка, удаление, переход к родителю, переход к ребенку. Таким образом, дерево может использоваться и как обыкновенный словарь, и как очередь с приоритетами.

Основные операции в деревьях выполняются за время пропорциональное его высоте. Сбалансированные деревья минимизируют свою высоту (к примеру, высота бинарного сбалансированного дерева с n узлами равна log n). Большинство знакомо с такими сбалансированными деревьями, как «красно-черное дерево», «AVL-дерево», «Декартово дерево», поэтому не будем углубляться.

В чем же проблема этих стандартных деревьев поиска? Рассмотрим огромную базу данных, представленную в виде одного из упомянутых деревьев. Очевидно, что мы не можем хранить всё это дерево в оперативной памяти => в ней храним лишь часть информации, остальное же хранится на стороннем носителе (допустим, на жестком диске, скорость доступа к которому гораздо медленнее). Такие деревья как красно-черное или Декартово будут требовать от нас log n обращений к стороннему носителю. При больших n это очень много. Как раз эту проблему и призваны решить B-деревья!

B-деревья также представляют собой сбалансированные деревья, поэтому время выполнения стандартных операций в них пропорционально высоте. Но, в отличие от остальных деревьев, они созданы специально для эффективной работы с дисковой памятью (в предыдущем примере – сторонним носителем), а точнее — они минимизируют обращения типа ввода-вывода.
Читать дальше →
Всего голосов 82: ↑75 и ↓7+68
Комментарии32

Поиск пути в гексагональной сетке (AS3)

Время на прочтение2 мин
Количество просмотров14K
imageЭта статья представляет собой описание компонента HexaPath, реализующего поиск пути по алгоритму А* в гексагональной сетке. В сети мной было найдено большое количество описаний алгоритма на примере квадратной сетки и некоторое количество реализаций, но ни одного упоминания о шестиугольной сетке. И я написал свою реализацию. Выкладываю исходники. Вдруг кому-нибудь понадобится это, а писать самому будет лень.

Читать дальше →
Всего голосов 96: ↑88 и ↓8+80
Комментарии48

Вычисление редакционного расстояния

Время на прочтение5 мин
Количество просмотров63K

Редакционное расстояние, или расстояние Левенштейна — метрика, позволяющая определить «схожесть» двух строк — минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения одной строки в другую. В статье излагается метод вычисления редакционного расстояния при использовании небольшого объема памяти, без существенной потери скорости. Данный подход может быть применен для больших строк (порядка 105 символов, т.е. фактически для текстов) при получении не только оценки «схожести», но и последовательности изменений для перевода одной строки в другую.
Читать дальше →
Всего голосов 81: ↑78 и ↓3+75
Комментарии19

Базовые алгоритмы нахождения кратчайших путей во взвешенных графах

Время на прочтение5 мин
Количество просмотров259K
Наверняка многим из гейм-девелоперов (или просто людям, увлекающимися програмировагнием) будет интересно услышать эти четыре важнейших алгоритма, решающих задачи о кратчайших путях.

Сформулируем определения и задачу.
Графом будем называть несколько точек (вершин), некоторые пары которых соединены отрезками (рёбрами). Граф связный, если от каждой вершины можно дойти до любой другой по этим отрезкам. Циклом назовём какой-то путь по рёбрам графа, начинающегося и заканчивающегося в одной и той же вершине. И ещё граф называется взвешенным, если каждому ребру соответствует какое-то число (вес). Не может быть двух рёбер, соединяющих одни и те же вершины.
Каждый из алгоритмов будет решать какую-то задачу о кратчайших путях на взвешенном связном. Кратчайший путь из одной вершины в другую — это такой путь по рёбрам, что сумма весов рёбер, по которым мы прошли будет минимальна.
Для ясности приведу пример такой задачи в реальной жизни. Пусть, в стране есть несколько городов и дорог, соединяющих эти города. При этом у каждой дороги есть длина. Вы хотите попасть из одного города в другой, проехав как можно меньший путь.
Читать дальше →
Всего голосов 79: ↑71 и ↓8+63
Комментарии31

LogLog — находим число уникальных элементов

Время на прочтение5 мин
Количество просмотров30K
Здравствуй, Хабр! Мы с тобой уже побаловались фильтрами Блума и MinHash. Сегодня разговор пойдёт о ещё одном вероятностном-рандомизированном алгоритме, который позволяет с минимальными затратами памяти определить примерное число уникальных элементов в больших объёмах данных.

Для начала, поставим себе задачу: предположим, что у нас имеется большой объём текстовых данных — скажем, плоды литературного творчества небезызвестного Шекспира, и нам необходимо подсчитать количество различных слов встречающихся в этом объёме. Типичное решение — счётчик с урезанной хеш-таблицей, где ключами будут слова без ассоциированных с ними значений.

Способ всем хорош, но требует относительно большой объём памяти для своей работы, ну а мы с вами, как известно, неугомонные гении эффективности. Зачем много, если можно мало — примерный размер словарного запаса упомянутого выше Шекспира, можно вычислить используя всего 128 байт памяти.

Кажется невозможным?
Всего голосов 81: ↑80 и ↓1+79
Комментарии30

Сверхбыстрая разметка изображений

Время на прочтение9 мин
Количество просмотров7K
В статье расскажу как можно очень быстро перечислить связные объекты на бинарном растре, значительно быстрее, чем я рассказывал в предыдущей статье. Казалось бы, куда такие скорости; теперь мы будем «расправляться» с картинками 4096 на 4096 за десятки миллисекунд. И хоть задача интересна и сама по себе, но в основе ее решения лежит довольно простой и оригинальный метод с достаточно широкой применимостью, основным тезисом которого является «сделаем как проще и посмотрим, что из этого выйдет». В данном случае в качестве основного вычислителя будет использоваться CUDA, но без особой специфики, потому что мы хотим сделать «очень просто».
Читать дальше →
Всего голосов 82: ↑75 и ↓7+68
Комментарии21

Умножение длинных чисел методом Карацубы

Время на прочтение7 мин
Количество просмотров96K
На днях нужно было разобраться с этим алгоритмом, но беглый поиск в google ничего путнего не дал. На Хабре тоже нашлась только одна статья, которая мне не особо помогла. Разобравшись, попробую поделиться с общественностью в доступной форме:
Читать дальше →
Всего голосов 116: ↑104 и ↓12+92
Комментарии90

Нечеткая логика на практике

Время на прочтение5 мин
Количество просмотров139K
Стандартная статья о нечеткой логике обычно грешит двумя вещами:

  1. В 99% случаев статья касается исключительно применения нечеткой логики в контексте нечетких множеств, а точнее нечеткого вывода, а еще точнее алгоритма Мамдани. Складывается впечатление, что только этим способом нечеткая логика может быть применена, однако это не так.
  2. Почти всегда статья написана на математическом языке. Замечательно, но программисты пользуются другим языком с другими обозначениями. Поэтому оказывается, что статья просто непонятна тем, кому, казалось бы, должна быть полезна.

Все это грустно, потому что нечеткая логика — это одно из величайших достижений математики XX-ого века, если критерием брать практическую пользу. В этой статье я попытаюсь показать, насколько это простой и мощный инструмент программирования — настолько же простой, но гораздо более мощный, чем система обычных логических операций.
Читать дальше →
Всего голосов 64: ↑60 и ↓4+56
Комментарии38
12 ...
12

Информация

В рейтинге
Не участвует
Откуда
Bacharach, Rheinland-Pfalz, Германия
Дата рождения
Зарегистрирован
Активность