Идею работы: «Похоже ли произведение искусства из коллекции музея на работы автора?» я придумала под датасет Музея MoMa. Конечно, хотелось бы установить: оригинал или подделка? Но для ответа на такой категоричный вопрос данных оказалось недостаточно.
У проекта было несколько целей. Разработка модели машинного обучения, способной оценить схожесть произведения искусства из коллекции музея на основе анализа её характеристик и работ автора, её создавшего. Исследование различных моделей машинного обучения для выявления схожести работ, таких как Logistic Regression, Decision Tree, Random Forest, LightGBM, CatBoost. Оценка точности и эффективности моделей, выбор лучшей. Выработка рекомендаций для дальнейшего улучшения системы выявления схожести, чтобы сделать её более точной и полезной для анализа произведений искусства.