Pull to refresh

Давайте уже разберемся в DNS

Reading time8 min
Views446K
Original author: Pete Keen

image
Внимательный читатель найдет на этой картинке IPv6


Люди часто озадачены доменами. Почему мой сайт не работает? Почему эта хрень поломана, ничего не помогает, я просто хочу, чтобы это работало! Обычно, вопрошающий или не знает про DNS, или не понимает фундаментальных идей. Для многих DNS — страшная и непонятная штука. Эта статья — попытка развеять такой страх. DNS — это просто, если понять несколько базовых концепций.


Что такое DNS


DNS расшифровывается как Domain Name System. Это глобальное распределенное хранилище ключей и значений. Сервера по всему миру могут предоставить вам значение по ключу, а если им неизвестен ключ, то они попросят помощи у другого сервера.


Вот и все. Правда. Вы или ваш браузер запрашивает значение для ключа www.example.com, и получает в ответ 1.2.3.4.


Базовые штуки


Большой плюс DNS в том, что это публичная услуга, и можно потыкать в сервера если хочется разобраться. Давайте попробуем. У меня есть домен petekeen.net, который хостится на машине web01.bugsplat.info. Команды, используемые ниже, можно запустить из командной строки OS X (ой, то есть macOS, — прим. пер.).


Давайте взглянем на маппинг между именем и адресом:


$ dig web01.bugsplat.info

Команда dig это такой швейцарский армейский нож для DNS-запросов. Крутой, многофункциональный инструмент. Вот первая часть ответа:


; <<>> DiG 9.7.6-P1 <<>> web01.bugsplat.info
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 51539
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

Здесь есть только одна интересная деталь: информация о самом запросе. Говорится, что мы запросили запись и получили ровно один ответ. Вот:


;; QUESTION SECTION:
;web01.bugsplat.info.       IN  A

dig по-умолчанию запрашивает A-записи. A это address (адрес), и это один из фундаментальных видов записей в DNS. A содержит один IPv4-адрес. Есть эквивалент для IPv6-адресов —  AAAA. Давайте взглянем на ответ:


;; ANSWER SECTION:
web01.bugsplat.info.    300 IN  A   192.241.250.244

Тут говорится, что у хоста web01.bugsplat.info. есть один адрес A192.241.250.244. Число 300 это TTL, или time to live (время жизни). Столько секунд можно держать значение в кэше до повторной проверки. Слово IN означает Internet. Так сложилось исторически, это нужно для разделения типов сетей. Подробнее об этом можно почитать в документе IANA's DNS Parameters.


Оставшаяся часть ответа описывает сам ответ:


;; Query time: 20 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Jul 19 20:01:16 2013
;; MSG SIZE  rcvd: 56

В частности, здесь говорится, как долго сервер откликался, какой у сервера IP-адрес (192.168.1.1), на какой порт стучался dig  (53, DNS-порт по-умолчанию), когда запрос был завершен и сколько байтов было в ответе.


Как видите, при обычном DNS-запросе происходит куча всего. Каждый раз, когда вы открываете веб-страницу, браузер делает десятки таких запросов, в том числе для загрузки всех внешних ресурсов вроде картинок и скриптов. Каждый ресурс отвечает за минимум один новый DNS-запрос, и если бы DNS не был рассчитан на сильное кэширование, то трафика генерировалось бы очень много.


Но в этом примере не видно, что DNS-сервер 192.168.1.1 связался с кучей других серверов чтобы ответить на простой вопрос: «куда указывает адрес web01.bugsplat.info?». Давайте запустим трейс чтобы узнать о всей возможной цепочке, которую пришлось бы пройти dig'у, если бы информация не был закэширована:


$ dig +trace web01.bugsplat.info

; <<>> DiG 9.7.6-P1 <<>> +trace web01.bugsplat.info
;; global options: +cmd
.           137375  IN  NS  l.root-servers.net.
.           137375  IN  NS  m.root-servers.net.
.           137375  IN  NS  a.root-servers.net.
.           137375  IN  NS  b.root-servers.net.
.           137375  IN  NS  c.root-servers.net.
.           137375  IN  NS  d.root-servers.net.
.           137375  IN  NS  e.root-servers.net.
.           137375  IN  NS  f.root-servers.net.
.           137375  IN  NS  g.root-servers.net.
.           137375  IN  NS  h.root-servers.net.
.           137375  IN  NS  i.root-servers.net.
.           137375  IN  NS  j.root-servers.net.
.           137375  IN  NS  k.root-servers.net.
;; Received 512 bytes from 192.168.1.1#53(192.168.1.1) in 189 ms

info.           172800  IN  NS  c0.info.afilias-nst.info.
info.           172800  IN  NS  a2.info.afilias-nst.info.
info.           172800  IN  NS  d0.info.afilias-nst.org.
info.           172800  IN  NS  b2.info.afilias-nst.org.
info.           172800  IN  NS  b0.info.afilias-nst.org.
info.           172800  IN  NS  a0.info.afilias-nst.info.
;; Received 443 bytes from 192.5.5.241#53(192.5.5.241) in 1224 ms

bugsplat.info.      86400   IN  NS  ns-1356.awsdns-41.org.
bugsplat.info.      86400   IN  NS  ns-212.awsdns-26.com.
bugsplat.info.      86400   IN  NS  ns-1580.awsdns-05.co.uk.
bugsplat.info.      86400   IN  NS  ns-911.awsdns-49.net.
;; Received 180 bytes from 199.254.48.1#53(199.254.48.1) in 239 ms

web01.bugsplat.info.    300 IN  A   192.241.250.244
bugsplat.info.      172800  IN  NS  ns-1356.awsdns-41.org.
bugsplat.info.      172800  IN  NS  ns-1580.awsdns-05.co.uk.
bugsplat.info.      172800  IN  NS  ns-212.awsdns-26.com.
bugsplat.info.      172800  IN  NS  ns-911.awsdns-49.net.
;; Received 196 bytes from 205.251.195.143#53(205.251.195.143) in 15 ms

Информация выводится в иерархической последовательности. Помните как dig вставил точку . после хоста, web01.bugsplat.info? Так вот, точка . это важная деталь, и она означает корень иерархии.


Корневые DNS-сервера обслуживаются различными компаниями и государствами по всему миру. Изначально их было мало, но интернет рос, и сейчас их 13 штук. Но у каждого из серверов есть десятки или сотни физических машин, которые прячутся за одним IP.


Итак, в самом верху трейса находятся корневые сервера, каждый определен с помощью NS-записи. NS-запись связывает доменное имя (в данном случае, корневой домен) с DNS-сервером. Когда вы регистрируете доменное имя у регистратора типа Namecheap или Godaddy, они создают NS-записи для вас.


В следующем блоке видно, как dig выбрал случайный корневой сервер, и запросил у него A-запись для web01.bugsplat.info. Видно только IP-адрес корневого сервера (192.5.5.241). Так какой именно корневой сервер это был? Давайте узнаем!


$ dig -x 192.5.5.241

; <<>> DiG 9.8.3-P1 <<>> -x 192.5.5.241
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 2862
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;241.5.5.192.in-addr.arpa.  IN  PTR

;; ANSWER SECTION:
241.5.5.192.in-addr.arpa. 3261  IN  PTR f.root-servers.net.

Флаг -x заставляет dig провести обратный поиск по IP-адресу. DNS отвечает записью PTR, которая соединяет IP и хост, в данном случае — f.root-servers.net.


Возвращаясь к нашему начальному запросу: корневой сервер F вернул другой набор NS-серверов. Он отвечает за домен верхнего уровня infodig запрашивает у одного из этих серверов запись A для web01.bugsplat.info, и получает в ответ еще один набор NS-серверов, и потом запрашивает у одного из этих серверов запись A для web01.bugsplat.info.. И, наконец, получает ответ!


Уф! Сгенерировалось бы много трафика, но почти все эти записи были надолго закэшированы каждым сервером в цепочке. Ваш компьютер тоже кэширует эти данные, как и ваш браузер. Чаще всего DNS-запросы никогда не доходят до корневых серверов, потому что их IP-адреса почти никогда не изменяются («Наверно все таки речь идет о большом TTL для записей в их базе. Если у DNS сервера IP адрес вообще ни разу не изменялся, то это не означает, что его база навечно закеширована» — прим. от rrrav). Домены верхнего уровня comnetorg, и т.д. тоже обычно сильно закэшированы.


Другие типы


Есть еще несколько типов, о которых стоит знать. Первый это MX. Он соединяет доменное имя с одним или несколькими почтовыми серверами. Электронная почта настолько важна, что у нее есть свой тип DNS-записи. Вот значения MX для petekeen.net:


$ dig petekeen.net mx

; <<>> DiG 9.7.6-P1 <<>> petekeen.net mx
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18765
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;petekeen.net.          IN  MX

;; ANSWER SECTION:
petekeen.net.       86400   IN  MX  60 web01.bugsplat.info.

;; Query time: 272 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Jul 19 20:33:43 2013
;; MSG SIZE  rcvd: 93

Заметьте, что MX-запись указывает на имя, а не на IP-адрес.


Еще один тип, который вам скорее всего знаком, это CNAME. Расшифровываетя как Canonical Name (каноническое имя). Он связывает одно имя с другим. Давайте посмотрим на ответ:


$ dig www.petekeen.net

; <<>> DiG 9.7.6-P1 <<>> www.petekeen.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16785
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.petekeen.net.      IN  A

;; ANSWER SECTION:
www.petekeen.net.   86400   IN  CNAME   web01.bugsplat.info.
web01.bugsplat.info.    300 IN  A   192.241.250.244

;; Query time: 63 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Jul 19 20:36:58 2013
;; MSG SIZE  rcvd: 86

Сразу видно, что мы получили два ответа. Первый говорит, что www.petekeen.net указывает на web01.bugsplat.info. Второй возвращает запись A для того сервера. Можно считать, что CNAME это псевдоним (или алиас) для другого сервера.


Что не так с CNAME


Записи CNAME очень полезны, но есть важный момент: если есть CNAME с каким-то именем, то нельзя создать другую запись с таким же именем. Ни MX, ни A, ни NS, ничего.


Причина в том, что DNS производит замену таким образом, что все записи того места, куда указывает CNAME, также валидны для CNAME. В нашем примере, записи у www.petekeen.net и web01.bugsplat.info будут совпадать.


Поэтому нельзя делать CNAME на корневом домене вроде petekeen.net, потому что обычно там нужны другие записи, например, MX.


Запросы к другим серверам


Давайте представим, что конфигурация DNS испорчена. Вам кажется, что вы исправили проблему, но не хотите ждать когда обновится кэш чтобы удостовериться. С помощью dig можно сделать запрос к публичному DNS-серверу вместо своего дефолтного, вот так:


$ dig www.petekeen.net @8.8.8.8

Символ @ с IP-адресом или хостом заставляет dig прозводить запрос к указанному серверу через порт по-умолчанию. Можно использовать публичный DNS-сервер Гугла или почти-публичный-сервер Level 3 по адресу 4.2.2.2.


Типичные ситуации


Давайте рассмотрим типичные ситуации, знакомые многим веб-разработчикам.


Редирект домена на www

Часто нужно сделать редирект домена iskettlemanstillopen.com на www.iskettlemanstillopen.com. Регистраторы типа Namecheap или DNSimple называют это URL Redirect. Вот пример из админки Namecheap:



Символ @ означает корневой домен iskettlemanstillopen.com. Давайте посмотрим на запись A у этого домена:


$ dig iskettlemanstillopen.com
;; QUESTION SECTION:
;iskettlemanstillopen.com.  IN  A

;; ANSWER SECTION:
iskettlemanstillopen.com. 500   IN  A   192.64.119.118

Этот IP принадлежит Namecheap'у, и там крутится маленький веб-сервер, который просто делает перенаправление на уровне HTTP на адрес http://www.iskettlemanstillopen.com:


$ curl -I iskettlemanstillopen.com
curl -I iskettlemanstillopen.com
HTTP/1.1 302 Moved Temporarily
Server: nginx
Date: Fri, 19 Jul 2013 23:53:21 GMT
Content-Type: text/html
Connection: keep-alive
Content-Length: 154
Location: http://www.iskettlemanstillopen.com/

CNAME для Heroku или Github


Взгляните на скриншот выше. На второй строке там CNAME. В этом случае www.iskettlemanstillopen.com указывает на приложение, запущенное на Heroku.


$ heroku domains
=== warm-journey-3906 Domain Names
warm-journey-3906.herokuapp.com
www.iskettlemanstillopen.com

С Github похожая история, но там нужно создать специальный файл в корне репозитория, и назвать его CNAME. См. документацию.


Wildcards


Большинство DNS-серверов поддерживают шаблоны (wildcards). Например, есть wildcard CNAME для *.web01.bugsplat.info указывает на web01.bugsplat.info. Тогда любой хост на web01 будет указывать на web01.bugsplat.info и не нужно создавать новые записи:


$ dig randomapp.web01.bugsplat.info

;; QUESTION SECTION:
;randomapp.web01.bugsplat.info. IN  A

;; ANSWER SECTION:
randomapp.web01.bugsplat.info. 300 IN CNAME web01.bugsplat.info.
web01.bugsplat.info.    15  IN  A   192.241.250.244

Заключение


Надеюсь, теперь у вас есть базовое понимание DNS. Все стандарты описаны в документах:



Есть еще пара интересных RFC, в том числе 4034, который описывает стандарт DNSSEC и 5321, который описывает взаимосвязь DNS и email. Их интересно почитать для общего развития.

Tags:
Hubs:
Total votes 52: ↑48 and ↓4+44
Comments36

Articles