Comments 8
Спасибо!
Хм, интересно же… Резонный вопрос задаю, а можно ли подобными инструментами заниматься прогнозированием, имея определённые входные данные?
Хм, интересно же… Резонный вопрос задаю, а можно ли подобными инструментами заниматься прогнозированием, имея определённые входные данные?
Всё-таки получается длинный код. И какие преимущества относительно статических картинок: тултипы, зум и спан? Для drop-down меню как-то привычнее использовать ipython-виджеты
alexkuku, а можешь привести пример на ipython виджетах, которые можно было бы отправить в NBviewer (или самое главное: без запуска python kernel), и где будут такие drop-down'ы?
Про длину кода люто согласен, это серьезная преграда для удобства пользования «из коробки». Приходится писать всякие неизбежно устаревающие или неработающие обертки, это непрактично.
Но пока я не знаю более хорошего способа поделиться с заказчиком, менеджером, или просто не-программистом результатом в Jupyter'е. Тутлипы со значениями критически важны для подобных визуализаций, очень сильно упрощают жизнь. Это такой BI в миниатюре: в твоей аналитике есть не только то, что попросил заказчик, но и то, что ему на самом деле надо, плюс ещё немного данных на «покрутить вокруг да около».
Про длину кода люто согласен, это серьезная преграда для удобства пользования «из коробки». Приходится писать всякие неизбежно устаревающие или неработающие обертки, это непрактично.
Но пока я не знаю более хорошего способа поделиться с заказчиком, менеджером, или просто не-программистом результатом в Jupyter'е. Тутлипы со значениями критически важны для подобных визуализаций, очень сильно упрощают жизнь. Это такой BI в миниатюре: в твоей аналитике есть не только то, что попросил заказчик, но и то, что ему на самом деле надо, плюс ещё немного данных на «покрутить вокруг да около».
Соглашусь, что получается длиннее чем просто вызов df.plot()
, который я чаще всего использую, но плюсы, о которых говорил Андрей feriat, пока что для меня перевешивают трудозатраты.
А вообще я использую простую функцию-обертку для стандартных графиков:
def plot_df(df, title):
data = []
for column in df.columns:
trace = go.Scatter(
x = df.index,
y = df[column],
mode = 'lines',
name = column
)
data.append(trace)
layout = dict(title = title)
fig = dict(data = data, layout = layout)
iplot(fig)
К сожалению, по моему опыту визуализация на основе JavaScript достаточно сильно нагружают процессор, по крайней мере на Firefox — сильнее, чем работающее ядро Python. И некоторые преобразования данных будут гораздо сложнее на стороне браузера.
С остальными преимуществами (тултипы и пр.) — согласен полностью.
Ещё вопрос: насколько стабилен интерфейс IPython widgets по сравнению с plotly?
Достаточно простые данные. Тут можно и без визуализации понять что к чему, просто посчитав количество. Я тут как-то брался за Игру престолов с каггла. Вот там уже дело было серьезное. Ума хватило только, чтобы построить 2 простых бара. На форуме правда нашел визуализацию весьма не плохую.
Вот кому интересно.
Вот кому интересно.
Полезная библиотека! Спасибо за обзор!
Sign up to leave a comment.
Немного про кино или как делать интерактивные визуализации в python