Рекомендации на основе изображений товаров

  • Tutorial
image

В данной статье я хотел бы рассмотреть на практике вариант построения простейшей рекомендательной системы основанной на схожести изображений товаров. Этот материал предназначен для тех, кто хотел бы попробовать применить Deep Learning, а именно свёрточные нейронные сети, в простом, интересном и практически применимом проекте, но не знает с чего начать.

Предыстория


К написанию данного прототипа меня подтолкнул процесс выбора футболок в интернет-магазине. Пролистав 1000 из 11 000 товаров я немного притомился. Очень хотелось получить возможность поискать товары похожие на те, что я уже отобрал. Встроенная рекомендательная система не могла помочь ничем. Было решено запилить свой вариант и посмотреть как он работает на реальных данных.

Парсинг картинок


Для начала был реализован простой парсер картинок из этой категории. Превьюшки разрешением 250x250 были сложены в одну папку с именами вида ItemID.jpg. Получилось около 11 000 картинок.

Извлечение признаков


Для определения схожести изображений нам нужно получить их векторные представления. Для этого возьмём свёрточную нейронную сеть используемую для классификации изображений (VGG-16), уже натренированную на большом датасете (ImageNet), и отрежем от нее последний слой, дающий на выходе вероятности каждого из 1000 классов ImageNet. В итоге у нас получится 4096-мерный вектор для каждого из изображений.

image

Прототип удобнее всего реализовывать в ipython notebook, очень советую тем, кто ещё не пробовал.

За основу был взят этот код: gist.github.com/baraldilorenzo/07d7802847aaad0a35d3

Подгружаем библиотеки:

%matplotlib inline
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.optimizers import SGD
import cv2, numpy as np
import os
import h5py
from matplotlib import pyplot as plt

import theano
theano.config.openmp = True

Загружаем предобученную на ImageNet VGG-16 и удаляем у нее последний слой:

def VGG_16(weights_path=None):
    model = Sequential()
    model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Flatten())
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096, activation='relu'))
#     model.add(Dropout(0.5))
#     model.add(Dense(1000, activation='softmax'))


    assert os.path.exists(weights_path), 'Model weights not found (see "weights_path" variable in script).'
    f = h5py.File(weights_path)
    for k in range(f.attrs['nb_layers']):
        if k >= len(model.layers):
        # we don't look at the last (fully-connected) layers in the savefile
            break
        g = f['layer_{}'.format(k)]
        weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
        model.layers[k].set_weights(weights)
    f.close()
    print('Model loaded.')
    return model


model = VGG_16('../../keras/vgg16_weights.h5')
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy')

Загружаем и преобразуем изображения в формат пригодный для нашей нейросети:

path = "../../keras/tshirts/out/"
ims = []
files = []
for f in os.listdir(path):
    if (f.endswith(".jpg")) and (os.stat(path+f) > 10000):
        try:
            files.append(f)
            im = cv2.resize(cv2.imread(path+f), (224, 224)).astype(np.float32)
    #         plt.imshow(im)
    #         plt.show()
            im[:,:,0] -= 103.939
            im[:,:,1] -= 116.779
            im[:,:,2] -= 123.68
            im = im.transpose((2,0,1))
            im = np.expand_dims(im, axis=0)
            ims.append(im)
        except:
            print f

images = np.vstack(ims)

Создаем словари для преобразования внешних IDшников к нашим и наоборот:

r1 =[]
r2= []
for i,x in enumerate(files):
    r1.append((int(x[:-4]),i))
    r2.append((i,int(x[:-4])))
extid_to_intid_dict = dict(r1)
intid_to_extid_dict = dict(r2)

Извлекаем векторные представления из картинок:

out = model.predict(images)
print out
print out.shape

Получается по 4096-мерному вектору для каждой из 11 556 картинок:

[[  0.00000000e+00   5.96046448e-08   4.35693979e+00 ...,   2.01165676e-07
   -2.30967999e-07   5.48017263e+00]
 [ -2.98023224e-08  -1.78813934e-07   5.60834265e+00 ...,   2.01165676e-07
    7.45058060e-09   9.42541122e+00]
 [  8.94069672e-08   0.00000000e+00   8.79157162e+00 ...,   2.01165676e-07
   -2.30967999e-07   8.50830841e+00]
 ..., 
 [  5.17337513e+00  -5.96046448e-08   6.89156103e+00 ...,   2.01165676e-07
    7.45058060e-09   1.49011612e-08]
 [  3.18071890e+00  -1.78813934e-07  -5.96046448e-08 ...,   2.01165676e-07
   -2.30967999e-07   1.49011612e-08]
 [  8.19161701e+00   5.96046448e-08   9.62305927e+00 ...,  -3.72529030e-08
   -2.30967999e-07   7.47453260e+00]]
(11556, 4096)

Поиск похожих изображений


Найдем насколько самых близких по косинусному расстоянию изображений:

from sklearn.metrics.pairwise import pairwise_distances
extid = 875317
i = extid_to_intid_dict[extid]
print i
plt.imshow(cv2.imread(path+files[i]))
plt.show()
dist = pairwise_distances(out[i],out, metric='cosine', n_jobs=1)

top = np.argsort(dist[0])[0:7]

for t in top:
    print t,dist[0][t]
    plt.imshow(cv2.imread(path+files[t]))
    plt.show()

image

Веб-интерфейс для тестов


Тестировать это всё в ipython не очень удобно, поэтому было решено сделать веб-интерфейс на Django.

Сохраняем необходимые данные для использования в веб-интерфейсе:

import joblib
joblib.dump((extid_to_intid_dict,intid_to_extid_dict,out),"../../keras/tshirts/models/wo_1_layer.pkl")

Далее при запуске поднимаем данные в память и при каждом запросе находим по 5 ближайших соседей

Вот результат. При запросе без параметра выбирает рандомное изображение. Выдаёт по 5 ближайших изображений для разных метрик расстояния — «cosine», «euclidean», «manhattan»

По-моему, получилось достаточно не плохо.

Интересно то, что нейросеть, обученная классифицировать изображения на ImageNet, умеет «понимать» что изображено на футболке и подбирать схожие по смыслу изображения.

Вот например:

Кошки
Медведи
Люди
Фрукты
Похожий стиль
Схожая текстура

Similar posts

Ads
AdBlock has stolen the banner, but banners are not teeth — they will be back

More

Comments 11

    0
      0
      В дополнение к предыдущему комментатору. Заметил одну вещь. В какой-то момент времени, появляются две идентичные картинки в разных категориях, если выбрать одну из них, то идентичных становится больше. Снова дублирующуюся, появляются уже 3 идентичных. Довёл до состояния, когда варианты предлагаются одни и те же, если выбирать повторяющиеся в трех категориях. Из 5 наборов в трех категориях четыре футболки повторяются трижды, а 5-я дублируется. Но автору спасибо. Как раз работаю над ТЗ на нейросетях.
        0
        Проблема в том, что в этом датасете встречаются абсолютно похожие футболки с разными ID, видно копируют дизайн друг у друга.
        0
        Отлично придумано! Кстати, а отчего было не использовать встроенную предобученную модель vgg16? Её же можно загрузить прямо стандартными средствами и тюнить дальше, в том числе, как раз, доставать выходы отдельных слоёв.
          0
          Да, скорее всего можно и так, просто первым нагуглился другой способ.
          0
          Какая скорость работы?
            0
            ~100-150мс на рекомендацию при 11000 объектах.
            Извлечение фич — несколько часов на CPU.
              0
              Что за проц? Сколько потоков? И сколько в памяти вся база занимает? Хочу сравнить методы.
                0
                Intel® Core(TM) i7-4770 CPU @ 3.40GHz
                Ближайшие объекты подбираются в один поток.
                Сама матрица фич для 11000 объектов ест ~200 MB RAM.
                А с чем сравниваем, если не секрет?
                  0
                  Поиск похожих изображений с помощью вейвлетов Габора.
                    0
                    интересны результаты тестов) если можете покажите пожалуйста… тоже есть вопросы тут задал https://toster.ru/q/380058

          Only users with full accounts can post comments. Log in, please.