Изучаем азотные лазеры — часть 1. Лазеры поперечного разряда

    Наверное, каждый увлекающийся околоэлектронными самоделками задавался вопросом, возможно ли сделать лазер самостоятельно, дома. И наверняка, очень часто натыкался на довольно предсказуемый ответ от старших, что это очень сложно или практически невозможно, дескать, лазерное излучение можно получить только из специальных дорогостоящих кристаллов и стекол, или каких-то ещё неведомых материалов, которые можно достать только в Тёмных Топях или на Заокраинном Западе. На самом деле это не так. Число веществ, в которых возможен лазерный процесс, исчисляются тысячами, и некоторые из них находятся буквально под ногами, и в прямом смысле вокруг нас, повсюду. Так, например, можно с удивлением узнать, что возможно получить лазерную генерацию в водяных парах, в красителях, добытых из фломастеров, в конце концов, в углекислом газе, выдыхаемом многими живыми существами, была получена лазерная генерация мощностью в сотни киловатт. Но, есть ещё одна рабочая среда лазера, которая распространена гораздо больше, чем все остальные вместе взятые. Это азот, которого 78% в атмосферном воздухе.

    image

    Если сделать в гугле запрос «самодельный лазер», то именно азотный всплывает первым, со множеством примеров конструкций:

    image

    Рассмотрим принцип его работы и конструкцию подробнее.

    Азотный лазер – типичный представитель молекулярных газовых лазеров, который работает на электронных переходах в молекуле азота. Его главное свойство – это интенсивная генерация в ультрафиолетовом диапазоне, с основной длиной волны равной 337.1 нм. Свойства азота как рабочей среды делают генерацию возможной только в импульсном режиме, поскольку переходы являются самоограниченными, т.е. длительность существования инверсии населённости на таких переходах ограничена накоплением частиц на нижнем уровне; она не больше времени жизни частиц на верхнем рабочем уровне. Время жизни верхнего уровня у азота порядка 40 наносекунд, поэтому излучаемый лазерный импульс тоже очень короткий, порядка единиц-десятков наносекунд. Это накладывает специфические требования к электрическому импульсу возбуждения – он также должен быть коротким с крутым фронтом, чтобы успеть перевести большое количество молекул в возбужденное состояние за время жизни верхнего уровня.

    При этом, у азота, как активной среды, очень высокий коэффициент усиления, настолько высокий, что не нужны зеркала – он вполне может работать в режиме сверхсветимости, когда усиление излучения происходит за один проход. А ещё, он может работать в широком интервале давлений вплоть до атмосферного. И, как выяснилось, кислород воздуха не мешает, хотя и снижает максимально достижимую мощность генерации. Таким образом, для самодельщика вырисовывается довольно привлекательная картина: рабочая среда предельно доступна, возня с вакуумом и газами не нужна, дефицитные материалы не нужны. Даже зеркала оптического резонатора не нужны. Нужно только немного повозиться с высоким напряжением. Рассмотрим подробнее устройство азотного лазера, который предлагается для самостоятельного изготовления.

    image

    Исходя из требования к импульсу возбуждения, как правило, вырисовывается схема накачки лазера основанная на генераторе Блюмляйна, который состоит из двух плоских конденсаторов, которые можно сформировать из нескольких слоев алюминиевой или медной фольги и диэлектрической пленки. Коммутатором в этом устройстве служит простейший искровой разрядник из двух винтов с закругленными головками. Казалось бы, где же сам лазер? А процесс генерации лазерного излучения происходит практически незаметно – в зазоре между двух металлических линеек, в котором горит импульсный разряд. Линейки укреплены на противоположных краях плоских конденсаторов С1 и С2. Разряд горит поперек оси линеек, а лазерное излучение выходит вдоль, соответственно получается газовый лазер с поперечным разрядом. Чтобы не загорался разряд в момент зарядки конденсаторов – параллельно лазерному зазору включен небольшой дроссель, который закорачивает зазор по постоянному току. Стоит подать высокое (порядка 10-15 кВ) напряжение как показано на схеме – и лазер заработает. В качестве источника ВН подходит любое подходящее средство – электрошокер, блок питания от ионизатора воздуха, электрофорная машина, источник ВН от ЭЛТ-телевизора или монитора. Поскольку он работает без зеркал, то излучение выходит с обоих концов линеек. Так как он излучает в ультрафиолете – это позволяет хорошо познакомиться с люминесценцией различных предметов и материалов. А ещё такой лазер довольно удобен для накачки лазера на красителях – просто добавь воды кювету с красителем и поставь под луч.

    По этой же причине, а также, поскольку энергия импульса очень мала (десятки микроджоулей), то его излучение сравнительно безопасно для глаз, так как поглощается роговицей и не достигает сетчатки. Хотя, смотреть прямо в луч все равно не следует – ультрафиолетовые ожоги роговицы вещь довольно неприятная.

    Таким образом, эта схема делает «порог вхождения» в мир лазерной техники очень низким, такой лазер был построен бесчисленным количеством людей.

    Есть конструкции пострашнее. Зелёное пятно на первой фотографии – люминесценция «мишени» для излучения.

    image

    image

    Есть более обстоятельные и аккуратные, как например эта.

    image

    Да такой лазер можно собрать вообще меньше чем за 2 минуты! Если конечно все исходные материалы подготовлены, а конструкция отработана, т.е. рука уже набита.


    Доступность и простота конструкции такого лазера позволяет экономить немало средств в западных университетских лабораториях, если к нему не предъявляют особых требований по выходным параметрам.

    Тем не менее, для гарантии успешной работы такого лазера есть несколько нюансов, которые нужно соблюдать. Самый главный из них в том, что края линеек-электродов должны быть максимально гладкими и иметь скругленные края, чтобы у разряда не было возможности собраться в одну искру, загоревшуюся с какого-то острия. Второй – правильный выбор изоляционной плёнки для плоских конденсаторов, чтобы получалась максимально возможная емкость при максимально возможной электропрочности. Третий – правильный выбор зазора между электродами, который должен быть выдержан точно по всей длине и быть не большим 2-3 мм. Именно тогда через лазерный разряд будет получен максимально короткий фронт тока. Допуски по последним двум нюансам можно облегчить, если снизить давление рабочего газа до 100-200 мм рт. ст., и если подать чистый азот вместо воздуха, но это автоматически означает появление пусть и примитивной, но вакуумной системы, и заключение электродов в мало-мальски герметичный объем. В такой конфигурации расстояние между электродами можно увеличить, а требования к крутизне фронта тока несколько снижаются – плоские конденсаторы можно заменить компактными керамическими. Но такая конструкция тоже имеет право на существование.

    К примеру, самодельные лазеры с продувкой азота от Джаррода Кинси.

    image

    Здесь из-за обилия разных предметов на его столе сам лазер рассмотреть довольно сложно.

    image

    Азотный лазер поперечного разряда с пониженным давлением, где плоские конденсаторы заменены керамическими. Конструкция Томаса Раппа.

    image

    Если кого интересует очень тщательное и подробное руководство по постройке такого лазера с описанием всех неочевидных нюансов, то стоит заглянуть опять на сайт Yun’a Sothory.

    А еще есть довольно популярная легенда, что лазерный эффект при искровом разряде в протяженных воздушных промежутках мог быть обнаружен задолго до открытия принципов работы лазера как такового, в те времена когда только начинали осваивать электричество. Но это красивый фейк, как например вот этот рисунок. Что не отменяет правдивость его содержания.

    image

    Статья с описанием «лазера викторианских времен» находится здесь.

    Теперь рассмотрим, какие в принципе бывают конструкции серийно выпускаемых азотных лазеров. На Западе абсолютно все встреченные мной азотные лазеры имеют поперечный разряд с накачкой от генератора Блюмляйна. Всё как в описанном самодельном лазере, только там добавлены удобные средства управления лазером, более продвинутые источники питания, вместо простейшего искрового разрядника – импульсный водородный тиратрон или управляемый искровой разрядник высокого давления, вместо больших плоских конденсаторов из пленки и фольги – много мелких керамических, а электроды между которыми происходит разряд расположены в закрытом объеме, в котором можно регулировать давление и вообще заправлять любой другой газ. Но принцип остается неизменным. У такой схемы есть следующие преимущества:

    1. Простота. Как сказано выше, во многих случаях вполне применима даже конструкция самодельного простейшего азотного лазера работающего на атмосферном воздухе, даже при вполне серьезной научной работе в лаборатории.
    2. Достаточно серьезная выходная энергия импульса – десятки миллиджоулей у крупных установок.
    3. Очень малая длительность импульса, в ряде случаев составляющая сотни пикосекунд.
    4. Сочетание предыдущих двух факторов позволяет достигнуть огромных импульсных мощностей – десятки-сотни мегаватт.

    Вместе с этим есть и некоторые недостатки:

    1. Отвратительное качество пучка. Луч не круглый а продолговатой формы, с неравномерной интенсивностью по сечению. В ряде случаев это не критично, когда, к примеру, нужно накачивать лазер на красителях.
    2. Ограниченная частота повторения импульсов, обычно не более нескольких десятков Гц.
    3. Нестабильность энергии от импульса к импульсу.
    4. Некоторые конструкции требуют периодического обслуживания – смены рабочего газа, поддержания его давления, периодической чистки и полировки электродов.

    Все упомянутые преимущества и недостатки полностью относятся и к самодельному азотному лазеру.

    Посмотрим как выглядят азотные лазеры западных производителей и сравним их конструкцию с простейшей самодельной.

    Малогабаритный азотный лазер фирмы Spectra-Physics и его лазерная камера с обвязкой. Эт лазер поперечного разряда с пониженным давлением.

    image

    image

    Вместо плоских конденсаторов тут керамические, сверху – управляемый искровой разрядник. Лазерная камера заполнена азотом и запаяна.

    Мощный азотный лазер, работающий на неосновном переходе в синей области спектра. Видно множество мелких керамических конденсаторов и блокирующий дроссель между электродами. Для получения генерации на иных длинах волн кроме 337.1 нм требуется добавка гелия к азоту.

    image

    Самая первая лазерная камера с поперечным разрядом, которая была сделана в 1973 году.

    image

    Лазерная установка фирмы Molectron.

    image

    Внутренности мощного лазера с поперечным разрядом, который при замене газовой смеси и оптики может работать как СО2 лазер или как эксимерный лазер.

    image

    Внешний вид электродов промышленно выпускаемого лазера с поперечным разрядом.

    image

    Лазерная камера для пикосекундных длительностей импульса.

    image

    Теперь, после всего сказанного выше, ко мне возникнет вполне резонный вопрос, не пробовал ли я повторять эту конструкцию. На самом деле, нет, не пробовал. На это были объективные причины. Если кратко – то мне нравится совершенно иной тип азотного лазера – лазер не поперечного, а продольного разряда! Но об этом в следующей части.

    Использованные источники:

    1. www.jarrodkinsey.org
    2. www.rapp-instruments.de
    3. www.spakbangbuzz.com
    4. www.jonsinger.org
    5. www.swissrocketman.fr
    6. www.mylaser.ucoz.ru
    7. www.laserkids.sourceforge.net
    8. www.technology.niagarac.on.ca
    Надеюсь, никого не забыл.
    Share post
    AdBlock has stolen the banner, but banners are not teeth — they will be back

    More
    Ads

    Comments 28

      +1
      Газодинамический не пробовали делать?
        0
        Нет, но думаю, всё ещё впереди.
          0
          Гораздо интереснее лазер на свободных электронах. :)
            0
            Ну еще скажите с ядерной накачкой O_o
              0
              Нет, с ядерной не надо. А вот смотрите — тут уже кто-то запускал электронный микроскоп. Значит, технологии работы с пучком электронов и получение глубокого вакуума дома в принципе есть. Осталось собрать ондулятор и по сути лазер готов.

              А для газодинамического лазера потребуется практически реактивный двигатель.
                0
                > А для газодинамического лазера потребуется практически реактивный двигатель.

                И тут на сцену выходит товарищ Негода. Стартуем! :)
                  0
                  Я больше намекал на некоторую опасность самого процесса генерации на свободных электронах. Там все очень точно и аккуратно нужно, иначе можно засветить, например, рентгеном во все места.
                    0
                    Но с другой стороны, там генерация, обычно, от жёсткого УФ до мягкого рентгена (делают, правда, иногда и жёсткий). Мягкий же рентген относительно безопасен — он даже через бумагу не проходит.
          0
          Насчет безопасности азотного лазера — тут не все так однозначно. Все-таки некоторая доля лазерного излучения до сетчатки доходит — во всяком случае, ее достаточно, чтобы его увидеть. Я, когда имел дело с азотным лазером, отчетливо видел его излучение, когда случайно получал бликом в глаз от стекол, люминесценцию которых в нем смотрел. Меня еще тогда удивило, что видимость излучения 337 нм не равна нулю.
          Конечно, да — энергия измеряется микроджоулями. О тепловом действии на сетчатку (с учетом ослабления средами глаза) тут речи не идет. Но помним, что мощность в импульсе при всем при этом чудовищна? И что это УФ излучение, причем достаточно жесткое, чтобы оказать физиологическое действие.
            0
            Я не уверен, что то что мы видим (и я в том числе) в виде бликов от азотного лазера это именно восприятие сетчаткой. Более вероятно, что это люминесценция самих внутриглазных сред. В темноте ещё можно заметить свечение пылинок по пути луча в воздухе. Но это касается почти всех видов лазеров, даже инфракрасных при большой мощности.
              0
              Не, люминесценция не образует изображения на сетчатке. Свечение внутренней среды глаза видно, как равномерный голубой туман. А я видел ясный, хоть и заметно расфокусированный, фиолетовый блик.
              +1
              Так вот же сегодня даже про это публикация была:
              habr.com/post/432064

              Да, часть излучения достигает сетчатки.
              И да, колбочки имеют ненулевую чувствительность к ультрафиолетовому излучению.
                +1
                Основная поясняющая картинка
                image
                Если монохроматором светить в глаз, то на 370-380нм вы увидите очень насыщенный фиолетовый цвет без примесей синего на выходной щели. На <360нм вы уже не увидите источника света, но возникнет ощущение «равномерного голубого тумана» возникающего как бы внутри глаза. На его фоне вы все еще продолжаете видеть наиболее яркие окружающие предметы.
                <340нм не проверял.
                0
                Но помним, что мощность в импульсе


                Там свехлюминесценция, поэтому импульс не должен быть коротким. Вот если поставить резонатор, тогда да.
                  0
                  Он там не может быть длинным. Время жизни верхнего уровня в чистом азоте при пониженном давлении — около 40 нс, а на воздухе — вообще единицы наносекунд.
                    0
                    Так минимальная длина импульса не ограничивается временем жизни уровня. Это излучение уже будет вынужденное, и поставив резонатор начнётся очень быстрый съём энергии с уменьшением длительности импульса. А с модулятором добротности импульс ещё больше уменьшится.
                +2
                Развлекался этим в молодости в 80х. Всё получилось. Основная проблема была не как все это построить и запустить, а как включить лазер незаметно для санитаров окружающих. Там искры во все стороны и треск стоял такой, как будто у нас короткое замыкание во всей проводке сразу и квартира сейчас сгорит на фиг. Ну и запахи весьма специфические. Кроме того с воздушным лазером там получилось не очень и мы начали добывать азот из разных странных веществ, некоторые из которых были токсичными. Люди при этом не пострадали, только соседские коты (но они сами виноваты — не фиг было лизать неизвестные порошки).

                Я так думаю, что попытка повторить это в современной России сразу привела бы к знакомству со всякими там антитеррорестическими спецслужбами и центрами Э, которые понабижали бы по наводке соседей :-)
                  +1
                  Самого главного фото тут нет. А именно, с дифракционной решеткой.
                    0
                    А насколько имеет смысл для увеличения мощности его масштабировать в длину? Скажем километровой длины такой лазер будет вундервафлей?
                      +1
                      Масштабируется он до длины где-то в пару метров. Дальше выходная энергия остается постоянной, так как за время импульса свет успевает пробежать всего пару метров, и при расстоянии большем чем эта пара метров он не будет успевать снимать накопленную энергию накачки.
                        0
                        А если организовать накачку бегущей волной? Чтобы по ходу распространения света шла и волна возбуждения?
                      0
                      Как по мне, импульсный лазер невидимого диапазона — не самая интересная штука.
                        0
                        но такой лазер очень легко построить, а дальше как и описано, накачать им чего угодно и получить видимый диапазон.
                          0
                          Вот да, видел на ютубе как им накачивали разные красители, впечатлился.
                          0
                          Наоборот: невидимый диапазон — это не баг, а фича. Но очень шумная и недальнобойная установка действительно не особо интересна. А вот добить хотя бы до полукилометра и попробовать двумя лазерами пообщаться морзянкой в полевых условиях было бы прикольно.
                          0

                          Каково применение в практических целях? Хотелось бы резать фанеру на ЧПУ

                            0
                            Дешевле и спокойнее купить. КПД, сертификация, гарантия, цена владения… Кстати, чтобы резать фанеру, Вам понадобятся гальванозеркала, которые уж точно лучше купить.
                              0
                              В данном случае никакого применения. Обычно это делается или как научный проект в институте или просто из любви к искусству.

                            Only users with full accounts can post comments. Log in, please.