Почему стоит научиться <<парсить>> сайты, или как написать свой первый парсер на Python

В этой статье я постараюсь понятно рассказать о парсинге данных и его нюансах.



image

Для начала давайте разберемся, что же действительно означает на первый взгляд непонятное слово — парсинг. Прежде всего это процесс сбора данных с последующей их обработкой и анализом. К этому способу прибегают, когда предстоит обработать большой массив информации, с которым сложно справиться вручную. Понятно, что программу, которая занимается парсингом, называют — парсер. С этим вроде бы разобрались.

Перейдем к этапам парсинга.

  • Поиск данных
  • Извлечение информации
  • Сохранение данных


И так, рассмотрим первый этап парсинга — Поиск данных.


Так как нужно парсить что-то полезное и интересное давайте попробуем спарсить информацию с сайта work.ua.
Для начала работы, установим 3 библиотеки Python.

pip install beautifulsoup4

Без цифры 4 вы ставите старый BS3, который работает только под Python(2.х).

pip install requests
pip install pandas


Теперь с помощью этих трех библиотек Python, можно проанализировать нашу веб-страницу.

Второй этап парсинга — Извлечение информации.


Попробуем получить структуру html-кода нашего сайта.
Давайте подключим наши новые библиотеки.

import requests
from bs4 import BeautifulSoup as bs
import pandas as pd


И сделаем наш первый get-запрос.

URL_TEMPLATE = "https://www.work.ua/ru/jobs-odesa/?page=2"
r = requests.get(URL_TEMPLATE)
print(r.status_code)


Статус 200 состояния HTTP — означает, что мы получили положительный ответ от сервера. Прекрасно, теперь получим код странички.

print(r.text)


Получилось очень много, правда? Давайте попробуем получить названия вакансий на этой страничке. Для этого посмотрим в каком элементе html-кода хранится эта информация.

<h2 class="add-bottom-sm"><a href="/ru/jobs/3682040/" title="Комірник, вакансия от 5 ноября 2019">Комірник</a></h2>


У нас есть тег h2 с классом «add-bottom-sm», внутри которого содержится тег a. Отлично, теперь получим title элемента a.

soup = bs(r.text, "html.parser")
vacancies_names = soup.find_all('h2', class_='add-bottom-sm')
for name in vacancies_names:
    print(name.a['title'])


Хорошо, мы получили названия вакансий. Давайте спарсим теперь каждую ссылку на вакансию и ее описание. Описание находится в теге p с классом overflow. Ссылка находится все в том же элементе a.

<p class="overflow">Some information about vacancy.</p>


Получаем такой код.

vacancies_info = soup.find_all('p', class_='overflow')
for name in vacancies_names:
    print('https://www.work.ua'+name.a['href'])
for info in vacancies_info:
    print(info.text)


И последний этап парсинга — Сохранение данных.


Давайте соберем всю полученную информацию по страничке и запишем в удобный формат — csv.
import requests
from bs4 import BeautifulSoup as bs
import pandas as pd

URL_TEMPLATE = "https://www.work.ua/ru/jobs-odesa/?page=2"
FILE_NAME = "test.csv"


def parse(url = URL_TEMPLATE):
    result_list = {'href': [], 'title': [], 'about': []}
    r = requests.get(url)
    soup = bs(r.text, "html.parser")
    vacancies_names = soup.find_all('h2', class_='add-bottom-sm')
    vacancies_info = soup.find_all('p', class_='overflow')
    for name in vacancies_names:
        result_list['href'].append('https://www.work.ua'+name.a['href'])
        result_list['title'].append(name.a['title'])
    for info in vacancies_info:
        result_list['about'].append(info.text)
    return result_list


df = pd.DataFrame(data=parse())
df.to_csv(FILE_NAME)



После запуска появится файл test.csv — с результатами поиска.

«Кто владеет информацией, тот владеет миром» (Н. Ротшильд).
Tags:
парсинг сайта, python 3, интересное

You can't comment this post because its author is not yet a full member of the community. You will be able to contact the author only after he or she has been invited by someone in the community. Until then, author's username will be hidden by an alias.

Similar posts