Pull to refresh
0
0
Send message

Что может и чего не может нейросеть: пятиминутный гид для новичков

Reading time8 min
Views73K
С момента описания первого искусственного нейрона Уорреном Мак-Каллоком и Уолтером Питтсом прошло более пятидесяти лет. С тех пор многое изменилось, и сегодня нейросетевые алгоритмы применяются повсеместно. И хотя нейронные сети способны на многое, исследователи при работе с ними сталкиваются с рядом трудностей: от переобучения до проблемы «черного ящика».

Если термины «катастрофическая забывчивость» и «регуляризация весов» вам пока ни о чем не говорят, читайте дальше: попробуем разобраться во всем по порядку.

Читать дальше →

Как встать на плечи гиганта. Пособие для финтех-стартапов

Reading time7 min
Views5.5K

Сегодня мы решили поговорить с Сергеем SergeyMaksimchuk Максимчуком, он отвечает за работу с перспективными партнерами в команде инноваций (Innovation Team) Альфа-Лаборатории, которая призвана искать и привносить в Альфа-Банк инновации с внешнего мира. Именно через него стартапы могут предложить свои идеи банку. Задача Innovation team — оценив проект, найти заказчика внутри Альфа-Банка и сделать так, чтобы проект полетел. Так ли это сложно? Чего хочет Альфа-Банк от стартаперов? Что должны сделать команды, чтобы партнерство состоялось? Сергей раскрывает все секреты.

— Как вообще банки и финтех-стартапы могут дружить? Какая в этом польза? Разве они не конкуренты друг другу?

Читать дальше →

Ограничения глубинного обучения и будущее

Reading time19 min
Views23K
Эта статья представляет собой адаптацию разделов 2 и 3 из главы 9 моей книги «Глубинное обучение с Python» (Manning Publications).

Статья рассчитана на людей, у которых уже есть значительный опыт работы с глубинным обучением (например, тех, кто уже прочитал главы 1-8 этой книги). Предполагается наличие большого количества знаний.



Ограничения глубинного обучения


Глубинное обучение: геометрический вид


Самая удивительная вещь в глубинном обучении — то, насколько оно простое. Десять лет назад никто не мог представить, каких потрясающих результатов мы достигнем в проблемах машинного восприятия, используя простые параметрические модели, обученные с градиентным спуском. Теперь выходит, что нужны всего лишь достаточно большие параметрические модели, обученные на достаточно большом количестве образцов. Как сказал однажды Фейнман о Вселенной: «Она не сложная, её просто много».
Читать дальше →

Лекция Владимира Игловикова на тренировке Яндекса по машинному обучению

Reading time18 min
Views13K
Скорее всего, вы слышали об авторе этой лекции. Владимир ternaus Игловиков занял второе место в британском Data Science Challenge, но организаторы конкурса не стали выплачивать ему денежный приз из-за его российского гражданства. Затем наши коллеги из Mail.Ru Group взяли выплату приза на себя, а Владимир, в свою очередь, попросил перечислить деньги в Российский Научный Фонд. История получила широкий охват в СМИ.

Спустя несколько недель Владимир выступил на одной из тренировок Яндекса по машинному обучению. Он рассказал о своём подходе к участию в конкурсах, о сути Data Science Challenge и о решении, которое позволило ему занять второе место.


Машинное обучение для страховой компании: Улучшение модели через оптимизацию алгоритмов

Reading time7 min
Views8.7K
Выходим на финишную прямую. Чуть больше двух месяцев назад я делилась с вами вводной статьёй о том, для чего нужно машинное обучение в страховой компании и как проверялась реалистичность самой идеи. После чего мы поговорили о тестировании алгоритмов. Сегодня будет последняя статья из серии, в которой вы узнаете об улучшении модели через оптимизацию алгоритмов и их взаимодействие.


Читать дальше →

Artisto: опыт запуска нейросетей в production

Reading time21 min
Views17K
конференция разработчиков высоконагруженных систем HighLoad++

Эдуард Тянтов (Mail.ru Group)


Меня зовут Эдуард Тянтов, я занимаюсь машинным обучением в компании Mail.ru Group. Я расскажу про приложение стилизации видео с помощью нейронных сетей Artisto, про технологию, которая лежит в основе этого приложения.

Давайте я дам пару фактов о нашем приложении:

  • 1-е мобильное приложение стилизации видео в мире;
  • Уникальная технология стабилизации видео;
  • Приложение с технологией разработаны за 1 месяц.
Читать дальше →

Введение в алгоритм A*

Reading time10 min
Views197K
При разработке игр нам часто нужно находить пути из одной точки в другую. Мы не просто стремимся найти кратчайшее расстояние, нам также нужно учесть и длительность движения. Передвигайте звёздочку (начальную точку) и крестик (конечную точку), чтобы увидеть кратчайший путь. [Прим. пер.: в статьях этого автора всегда много интерактивных вставок, рекомендую сходить в оригинал статьи.]


Для поиска этого пути можно использовать алгоритм поиска по графу, который применим, если карта представляет собой граф. A* часто используется в качестве алгоритма поиска по графу. Поиск в ширину — это простейший из алгоритмов поиска по графу, поэтому давайте начнём с него и постепенно перейдём к A*.

Руководство: как использовать Python для алгоритмической торговли на бирже. Часть 2

Reading time5 min
Views20K


Мы продолжаем публикацию адаптации руководства DataCamp по использованию Python для разработки финансовых приложений. Первая часть материала рассказывала об устройстве финансовых рынков, акциях и торговых стратегиях, данных временных рядов, а также о том, что понадобится для начала разработки.

Теперь, когда вы уже больше знаете про требования к данным, разобрались с понятием временных рядов и познакомились с pandas, пришло время глубже погрузиться в тему финансового анализа, который необходим для создания торговой стратегии.

Jupyter notebook этого руководства можно скачать здесь.
Читать дальше →

Код Прюфера

Reading time3 min
Views90K

Деревья. Кратко напомним


Дерево – частный случай графа. Деревья широко применяются в программировании. Дерево – это связный граф без циклов. Дерево называется помеченным, если каждой вершине соответствует уникальная метка. Обычно это число.


Читать дальше →

Энтропия и деревья принятия решений

Reading time8 min
Views122K
Деревья принятия решений являются удобным инструментом в тех случаях, когда требуется не просто классифицировать данные, но ещё и объяснить почему тот или иной объект отнесён к какому-либо классу.

Давайте сначала, для полноты картины, рассмотрим природу энтропии и некоторые её свойства. Затем, на простом примере, увидим каким образом использование энтропии помогает при создании классификаторов. После чего, в общих чертах сформулируем алгоритм построения дерева принятия решений и его особенности.
Читать дальше →

Information

Rating
Does not participate
Registered
Activity