Pull to refresh
3
0
Dmitry V. Vinogradov @KRRGuest

Researcher

Send message

Objects Representations for Machine Learning system based on Lattice Theory

Reading time5 min
Views1.4K

This is a fourth article in the series of works (see also first one, second one, and third one) describing Machine Learning system based on Lattice Theory named 'VKF-system'. The program uses Markov chain algorithms to generate causes of the target property through computing random subset of similarities between some subsets of training objects. This article describes bitset representations of objects to compute these similarities as bit-wise multiplications of corresponding encodings. Objects with discrete attributes require some technique from Formal Concept Analysis. The case of objects with continuous attributes asks for logistic regression, entropy-based separation of their ranges into subintervals, and a presentation corresponding to the convex envelope for subintervals those similarity is computed.


got idea!

Read more →

Представление объектов для машинного обучения, основанного на теории решеток

Reading time6 min
Views2.9K

Это четвертая статья из серии работ (ссылки на первую, вторую и третью статьи), посвященных системе машинного обучения, основанного на теории решеток, названной "ВКФ-система". Программа использует алгоритмы, основанные на цепях Маркова, чтобы породить причины целевого свойства путем вычисления случайного подмножества сходств между некоторыми группами обучающих объектов. Эта статья описывает представление объектов через битовые строки, чтобы вычислять сходства посредством побитового умножения соответствующих представлений. Объекты с дискретными признаками требуют некоторой техники из Анализа формальных понятий. Случай объектов с непрерывными признаками использует логистическую регрессию, разделение области изменения на подынтервалы с помощью теории информации и представление, соответствующее выпуклой оболочке сравниваемых интервалов.


got idea!

Читать дальше →

Mathematics of Machine Learning based on Lattice Theory

Reading time7 min
Views2K

This is a third article in the series of works (see also first one and second one) describing Machine Learning system based on Lattice Theory named 'VKF-system'. It uses structural (lattice theoretic) approach to representing training objects and their fragments considered to be causes of the target property. The system computes these fragments as similarities between some subsets of training objects. There exists the algebraic theory for such representations, called Formal Concept Analysis (FCA). However the system uses randomized algorithms to remove drawbacks of the unrestricted approach. The details follow…
Areas of Formal Concept Analysis

Read more →

Математика машинного обучения, основанного на теории решеток

Reading time7 min
Views5K

Это третья статья серии работ (ссылки на первую и вторую работы), описывающих систему машинного обучения, основанного на теории решеток, озаглавленную "ВКФ-система". Она использует структурный (теоретико-решеточной) подход к представлению обучающих примеров и их фрагментов, рассматриваемых как причины целевого свойства. Система вычисляет эти фрагменты как сходства между некоторыми подмножествами обучающих примеров. Существует алгебраическая теория таких представлений, называемая Анализом формальных понятий (АФП).


Однако описываемая система использует вероятностные алгоритмы, чтобы устранить недостатки неограниченного подхода. Подробности ниже...


Области применения АФП

Читать дальше →

Machine Learning CPython library 'VKF'

Reading time14 min
Views1.4K
Previous article describes a web server for Machine Learning system 'VKF' based on Lattice Theory. This paper is an attempt to explain details of using the CPython library directly. We reproduce working sessions of experiments on datasets 'Mushroom' and 'Wine Quality' from UCI Machine Learning repository. The structures of input files are discussed too.


Read more →

CPython библиотека «ВКФ» для машинного обучения

Reading time14 min
Views2.9K
В предыдущей заметке автора был описан web-сервер для проведения экспериментов с ВКФ-методом машинного обучения, основанного на теории решеток. Как альтернатива использования web-сервера в настоящей заметке сделана попытка указать путь использования CPython-библиотеки напрямую. Мы воспроизведем рабочие сессии экспериментов с массивами Mushroom и Wine Quality из UCI репозитория данных для тестирования алгоритмов машинного обучения. Потом будут даны объяснения о форматах входных данных.


Читать дальше →

Web server for Machine Learning 'VKF-solver'

Reading time20 min
Views1.6K
Nowadays most people identify Machine Learning with training of various kinds of neural networks. At the beginning there were fully connected networks, then convolutional and recurrent networks replace them, now there exist a quite exotic variants of networks such that GAN and LTSM networks.

Their training requires constantly increasing volume of samples, and they also do not be able to explain why a particular decision was made. Structural approaches to Machine Learning avoiding these drawbacks exist, the software implementation of one of which is described in the article. This is an English translation of original post by the author.


Read more →

Web-сервер машинного обучения «ВКФ-решатель»

Reading time21 min
Views4.3K
Сейчас в глазах обычной публики машинное обучение прочно ассоциируется с различными вариантами обучения нейронных сетей. Если первоначально это были полносвязные сети, потом заместившиеся сверточными и рекуррентными, то теперь это стало совсем экзотическими вариантами типа GAN и LTSM-сетей. Кроме все больших объемов выборок, требуемых для их обучения, они еще страдают невозможностью объяснить, почему было принято то или иное решение. Но существуют и структурные подходы к машинному обучению, программная реализация одного из которых описана в настоящей статье.


Читать дальше →

Information

Rating
Does not participate
Date of birth
Registered
Activity