Пришлось это мне в последнее время поработать с задачами, где нужно было оперировать кватернионами и заниматься перепроецированием векторов в разные системы координат (это еще называется заменой базиса). Сначала по чужим формулам — причем с опечатками и даже, как выяснилось, с фактическими ошибками — а потом делать свои, по аналогии. И всё даже работало! Но сохранялся какой-то туман в понимании происходящего. А всё, как оказалось, из-за этих ошибок: их комбинация давала систему, в целом сохраняющую корректность, неверным путем таки достигался верный результат. Зато такая удача сильно мешала осознанию проблемы и прояснению природы феномена «верный итог при подозрительных формулах». При этом разбираться досконально времени все не было — работает же, числа выдает правильные, чего тебе еще надо, собака? Вперед, нужно больше
золота кода! А вот сейчас пришел момент, когда я, похоже, окончательно всё понял, и хочу поделиться получившейся картинкой с окружающими. Вдруг кому пригодится, и себе памятка.
Заранее оговорюсь, что материал не претендует на академичность изложения, а скорее просто описывает удобный для запоминания способ интерпретации того, что происходит при перепроецировании векторов.
Стало быть, речь у нас пойдет в особенности о проекциях и поворотах.