Pull to refresh
0
@danil_dmitriev_dsread⁠-⁠only

User

Send message

Telegram в качестве хранилища данных для IT проектов

Reading time8 min
Views38K
Добрый день, сегодня я хотел бы поделится с Вами проблемами и их необычными решениями, которые встретились при написании небольших IT проектов. Сразу скажу, что статья для тех, кто хоть немного разбирается в разработке телеграмм ботов, баз данных, SQL и в языке программировании python.

Весь проект выложен на github, ссылка будет в конце статьи.

image

Основная проблема


Изначально я хотел для себя написать простенького телеграмм бота счетчика калорий, который получает число от пользователя и возвращает сколько калорий осталось до нормы на день. То есть нужно хранить грубо говоря пару переменных для каждого пользователя.
Читать дальше →

Разговорный BERT — учим нейросеть языку соцсетей

Reading time2 min
Views9.4K
Одним из главных событий в области компьютерной лингвистики и машинного обучения в 2018 году был выпуск BERT от Google AI, который признан лучшим докладом года по мнению североамериканского отделения Ассоциации компьютерной лингвистики (NACL). В этой статье мы расскажем об этой языковой модели и ее возможностях.

Для тех, кто не слышал ранее, BERT — это нейронная сеть, основанная на методе предварительной подготовки контекстных представлений слов, то есть использует двунаправленную модель языка, а также позволяет анализировать целые предложения. В этом случае, учитываются слова, которые идут после данного и через тоже. Этот метод позволяет получать с большим отрывом state-of-the-art результаты в широком спектре задач обработки естественного языка (NLP), но требует больших вычислительных мощностей.


Читать дальше →

Natural Language Processing онлайн-чеков: курс уроков волшебства для обычного кота и другие проблемы

Reading time10 min
Views7.9K
Компания CleverDATA занимается разработкой платформы для работы с большими данными. В частности, на нашей платформе есть возможность работать с  информацией из чеков онлайн-покупок. Перед нами стояла задача научиться обрабатывать текстовые данные чеков и строить на них выводы о потребителях для создания соответствующих характеристик на бирже данных. Было естественно для решения этой задачи обратиться к машинному обучению. В этой статье мы хотим рассказать про проблемы, с которыми встретились при классификации текстов онлайн-чеков. 

Источник
Читать дальше →

Автоматическое определение эмоций в текстовых беседах с использованием нейронных сетей

Reading time10 min
Views15K

Одна из основных задач диалоговых систем состоит не только в предоставлении нужной пользователю информации, но и в генерации как можно более человеческих ответов. А распознание эмоций собеседника — уже не просто крутая фича, это жизненная необходимость. В этой статье мы рассмотрим архитектуру рекуррентной нейросети для определения эмоций в текстовых беседах, которая принимала участие в SemEval-2019 Task 3 “EmoContext”, ежегодном соревновании по компьютерной лингвистике. Задача состояла в классификации эмоций (“happy”, “sad”, “angry” и “others”) в беседе из трех реплик, в которой участвовали чат-бот и человек.

В первой части статьи мы рассмотрим поставленную в EmoContext задачу и предоставленные организаторами данные. Во второй и третьей частях разберём предварительную обработку текста и способы векторного представления слов. В четвёртой части мы опишем архитектуру LSTM, которую мы использовали в соревновании. Код написан на языке Python с использованием библиотеки Keras.
Читать дальше →

Жизненный цикл ML в боевых условиях

Reading time16 min
Views13K
В реальном внедрении ML само обучение занимает от силы четверть усилий. Остальные три четверти — подготовка данных через боль и бюрократию, сложный деплой часто в закрытом контуре без доступа в интернет, настройка инфраструктуры, тестирование и мониторинг. Документы на сотни листов, ручной режим, конфликты версий моделей, open source и суровый enterprise — все это ждет data scientist’а. Но такие «скучные» вопросы эксплуатации ему не интересны, он хочет разработать алгоритм, добиться высокого качества, отдать и больше не вспоминать.

Возможно, где-то ML внедряется легче, проще, быстрее и одной кнопкой, но мы таких примеров не видели. Все, что выше — опыт компании Front Tier в финтехе и телекоме. О нем на HighLoad++ рассказал Сергей Виноградов — эксперт в архитектуре высоконагруженных систем, в больших хранилищах и тяжелом анализе данных.


Машинное обучение vs. аналитический подход

Reading time5 min
Views8.1K


Какое-то время назад мы нашли свои старые материалы, по которым обучали первые потоки на наших курсах машинного обучения в Школе Данных и сравнили их с теперешними. Мы удивились, сколько всего мы добавили и поменяли за 5 лет обучения. Осознав, почему мы это сделали и как, на самом деле, поменялся подход к решению задач Data Science, мы решили написать вот эту публикацию.
Читать дальше →

5 распространенных ошибок начинающих программистов на Python

Reading time4 min
Views52K
В первые дни работы программистом на Python все мы сталкиваемся с разными типами багов в нашем коде, которые после нескольких болезненных часов в StackOverflow оказываются не багом, а фичей Python'а. Ниже приведены 5 самых распространенных ошибок, которые делают большинство начинающих программистов на Python. Давайте немного о них узнаем, чтобы сэкономить несколько часов, задавая вопросы на страницах и в группах в Facebook.
Читать дальше →

Заполняем документы в Microsoft Word при помощи Python. Часть 2

Reading time2 min
Views22K

Размножаем документы

.
В предыдущем посте было рассмотрено как заполнить запрос в word с помощью python. В этот раз будет продемонстрировано как заполнить сразу несколько word документов данными из таблицы excel.

Перед тем как работать с программой, нам необходимо подготовить файл excel, где будут содержаться исходные данные. Создадим файл excel с такими данными или используем готовый:

image

Теперь обратимся к программе.
Читать дальше →

XLNet против BERT

Reading time3 min
Views14K


В конце июня коллектив из Carnegie Mellon University показал нам XLNet, сразу выложив публикацию, код и готовую модель (XLNet-Large, Cased: 24-layer, 1024-hidden, 16-heads). Это предобученная модель для решения разных задач обработки естественного языка.

В публикации они сразу же обозначили сравнение своей модели с гугловым BERT-ом. Они пишут, что XLNet превосходит BERT в большом количестве задач. И показывает в 18 задачах state-of-the-art результаты.
Читать дальше →

Deep (Learning+Random) Forest и разбор статей

Reading time7 min
Views26K

Продолжаем рассказывать про конференцию по статистике и машинному обучению AISTATS 2019. В этом посте разберем статьи про глубокие модели из ансамблей деревьев, mix регуляризацию для сильно разреженных данных и эффективную по времени аппроксимацию кросс-валидации.


Читать дальше →

Как я организовал тренировки по машинному обучению в НГУ

Reading time4 min
Views4.1K
Меня зовут Саша и я люблю машинное обучение, а также обучение людей. Сейчас курирую образовательные программы в Computer Science центре и руковожу бакалавриатом по анализу данных в СПбГУ. До этого работал аналитиком в Яндексе, а ещё раньше — учёным: занимался математическим моделированием в ИВТ СО РАН.

В этом посте хочу рассказать, что получилось из идеи запуска тренировок по машинному обучению для студентов, выпускников Новосибирского государственного университета и всех желающих.

image
Читать дальше →

Дедупликация объявлений на Яндекс.Недвижимости

Reading time4 min
Views3.5K
В прошлом семестре студенты Computer Science центра Сергей Горбатюк и Пётр Кароль работали над дедупликацией объявлений на Яндекс.Недвижимости под руководством Владимира Горового, менеджера проекта. Ребята рассказали нам, как устроен проект, и каких результатов они достигли.

image

Читать дальше →

Uber: Обзор главных алгоритмов управления платформой

Reading time10 min
Views17K

1. Введение


Онлайн-платформы пассажироперевозок, такие как Uber, DiDi и Yandex возникли достаточно недавно, при этом они быстро достигли внушительных размеров и, несмотря на свой небольшой возраст, существенно видоизменили и дополнили систему городского транспорта. Технологии и теоретические модели, используемые этими платформами (или разрабатываемые для них), на данный момент являются областью активных исследований для широкого спектра специалистов научного сообщества: экономистов, математиков, программистов и инженеров.

В этой статье мы (как представители команды Uber Marketplace Optimization) коротко представим взгляд изнутри на главные рычаги управления эффективностью онлайн-платформ: алгоритмы, отвечающие за диспетчерские решения (matching), динамическое ценообразование (dynamic pricing), а также представим одну из новых концепций — динамическое время назначения автомобиля (dynamic waiting). Основываясь на реальном практическом опыте, мы покажем, что все три алгоритма играют важную роль для создания системы с высокой производительностью и низким временем ожидания заказов как для пассажиров, так и для водителей.

Представленное описание алгоритмов будет носить ознакомительных характер и намеренно лишено технической глубины и строгости. Заинтересовавшийся читатель приглашается изучить оригинал статьи (Dynamic Pricing and Matching in Ride-Hailing PlatformsN.Korolko, D.Woodard, C.Yan, H.Zhu — 2019), опубликованной исследователями из отдела Uber Marketplace, по мотивам которой этот краткий ознакомительный обзор и создан.
Читать дальше →

Отличия LabelEncoder и OneHotEncoder в SciKit Learn

Reading time3 min
Views58K

Если вы недавно начали свой путь в машинном обучении, вы можете запутаться между LabelEncoder и OneHotEncoder. Оба кодировщика — часть библиотеки SciKit Learn в Python и оба используются для преобразования категориальных или текстовых данных в числа, которые наши предсказательные модели понимают лучше. Давайте выясним отличия между кодировщиками на простеньком примере.




Кодирование признаков


Прежде всего, документацию SciKit Learn для LabelEncoder можно найти здесь. Теперь рассмотрим такие данные:


Данные из SuperDataScience

В этом примере первый столбец (страна) является полностью текстовым. Как вы, возможно, уже знаете, мы не можем использовать текст в данных для обучения модели. Поэтому, прежде чем мы сможем начать процесс, нам нужно эти данные подготовить.

Читать дальше →

Как Netflix использует Питон

Reading time7 min
Views21K


Поскольку многие из нас готовятся к конференции PyCon, мы хотели немного рассказать, как Python используется в Netflix. Мы применяем Python на всём жизненном цикле: от принятия решения, какие сериалы финансировать, и заканчивая работой CDN для отгрузки видео 148 миллионам пользователей. Мы вносим свой вклад во многие пакеты Python с открытым исходным кодом, некоторые из которых упомянуты ниже. Если что-то вас интересует, посмотрите наш сайт вакансий или ищите нас на PyCon.
Читать дальше →

Подборка датасетов для машинного обучения

Reading time6 min
Views166K
Привет, читатель!

Меня зовут Рушан, и я автор Telegram‑канала Нейрон. Не забудьте поделиться с коллегами или просто с теми, кому интересны такие статьи.

Перед тобой статья-путеводитель по открытым наборам данных для машинного обучения. В ней я, для начала, соберу подборку интересных и свежих (относительно) датасетов. А бонусом, в конце статьи, прикреплю полезные ссылки по самостоятельному поиску датасетов.

Меньше слов, больше данных.

image

Подборка датасетов для машинного обучения:


Читать дальше →

Перенос стиля

Reading time5 min
Views9.8K
Перенос стиля это процесс преобразования стиля исходного к стилю выбранного изображения и опирается на Сверточный тип сети (CNN), при этом заранее обученной, поэтому многое будет зависеть от выбора данной обученной сети. Благо такие сети есть и выбирать есть из чего, но здесь будет применяться VGG-16.

Для начала необходимо подключить необходимые библиотеки

Код объявления библиотек
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import torchvision
from torchvision import transforms
from io import BytesIO
from PIL import Image
from collections import OrderedDict
from google.colab import files
Читать дальше →

Почему вам следует использовать pathlib

Reading time15 min
Views92K

От переводчика: Привет, хабр! Представляю вашему вниманию перевод статьи Why you should be using pathlib и её продолжения, No really, pathlib is great. Много внимания нынче уделяется таким новым возможностям Python, как asyncio, оператору :=, и опциональной типизации. При этом за радаром рискуют пройти не столь значительные (хотя, := назвать серьёзным нововведением язык не поворачивается), но весьма полезные нововведения в язык. В частности, на хабре статей, посвящённых сабжу, я не нашел (кроме одного абзаца тут), поэтому решил исправить ситуацию.


Когда я открыл для себя тогда еще новый модуль pathlib несколько лет назад, я по простоте душевной решил, что это всего лишь слегка неуклюжая объектно-ориентированная версия модуля os.path. Я ошибался. pathlib на самом деле чудесен!


В этой статье я попытаюсь вас влюбить в pathlib. Я надеюсь, что эта статья вдохновит вас использовать pathlib в любой ситуации, касающейся работы с файлами в Python.

Читать дальше →

Построение автоматической системы модерации сообщений

Reading time9 min
Views8.7K
image
Автоматические системы модерации внедряются в веб-сервисы и приложения, где необходимо обрабатывать большое количество сообщений пользователей. Такие системы позволяют сократить издержки на ручную модерацию, ускорить её и обрабатывать все сообщения пользователей в real-time. В статье поговорим про построение автоматической системы модерации для обработки английского языка с использованием алгоритмов машинного обучения. Обсудим весь пайплайн работы от исследовательских задач и выбора ML алгоритмов до выкатки в продакшен. Посмотрим, где искать готовые датасеты и как собрать данные для задачи самостоятельно.
Читать дальше →

Information

Rating
Does not participate
Registered
Activity