Привет, с вами снова Даша и Uzum Market. В прошлый раз мы глубоко погрузились в пайплайн работы поиска нашего маркетплейса, и я обещала вам вернуться с новостями о его улучшении. Так вот, время пришло, и сегодня мы поговорим про наш опыт внедрения векторного поиска!
ML DS
Под капотом поискового движка: Как Uzum Market применяет ML, чтобы вы нашли желаемое
Привет, меня зовут Даша, я отвечаю за ранжирование в команде поиска Uzum Market. За время существования нашей команды мы успели накопить достаточный багаж факапов знаний, чтобы начать делиться им с вами.
Поиск — один из основных источников дохода маркетплейсов. Сценарий, где пользователь приходит на платформу с конкретной целью приобрести товар гораздо более вероятен, чем тот, где он зашел полистать ленту.
Ежедневно сотни тысяч пользователей полагаются на поиск Uzum Market, чтобы найти нужные им товары. Наша цель как команды, ответственной за поисковый движок, — предоставить им лучший сервис и помочь найти именно то, что они ищут.
С каждым днем количество товаров в нашем маркетплейсе растёт, и если раньше мы показывали десятки релевантных товаров по одному поисковому запросу, то сейчас их уже тысячи. Как правильно отранжировать товары, чтобы пользователь дошёл до чекаута? Какие данные нужны, чтобы определить релевантность товара по запросу? На какие метрики ориентироваться, чтобы измерить качество поиска?
На эти и другие вопросы мы пытаемся ответить ежедневно. И сегодня я приоткрою завесу над некоторыми решениями, которые мы уже реализовали на нашей площадке, а также расскажу про боли и трудности, с которыми пришлось столкнуться на пути к статистически значительным изменениям в метриках.
Велком всех под кат в увлекательное путешествие по внутренностям поиска Uzum Market!
Information
- Rating
- Does not participate
- Location
- Москва, Москва и Московская обл., Россия
- Date of birth
- Registered
- Activity