All streams
Search
Write a publication
Pull to refresh
4
0.1
Сергей @gres_84

C++ Developer

Send message

Квантовый дуализм и реальность на языке информации

Level of difficultyMedium
Reading time16 min
Views4.1K

Почему фотоны исчезают в тёмных полосах интерференции? Что значит — «каждый фотон интерферирует только с самим собой»? И как природа вообще позволяет одному и тому же объекту вести себя как частица и как волна одновременно — пока вы на него не смотрите?

Эта статья — попытка аккуратно, но живо разобрать то, что Фейнман называл «единственной настоящей загадкой квантовой механики». Без мистики, без занудства — с ясными объяснениями, визуализацией, реальными экспериментами и последними интерпретациями, включая квантовый ластик, многомировую картину и информационную природу реальности.

Для тех, кто хочет не просто услышать про двойную щель, а наконец понять, что там происходит.

Вперед, к квантовой информации

Классификация парадигм программирования

Level of difficultyEasy
Reading time6 min
Views6.7K

Здравствуйте, меня зовут Дмитрий Карловский и я.. придерживаюсь следующей парадигмы мышления: всякое определение должно иметь чёткую границу между тем, что ему соответствует, и тем, что не соответствует.

К сожалению, часто можно встретить споры о пересекающихся определениях, словно они взаимоисключают друг друга. Не менее часто можно встретить ложную дилемму между двумя терминами не покрывающими всё множество сущностей.

Что ж, позвольте внести ясность и предложить вам непротиворечивую классификацию парадигм - подходов к написанию кода, во многом определяющих способ мышления человека по донесению задачи до кремниевого исполнителя.

Аспекты классификации

Senders/Receivers в C++26: от теории к практике

Level of difficultyMedium
Reading time16 min
Views6.5K

Каждому C++-разработчику приходится решать задачи асинхронности — от сетевых запросов до фоновых вычислений. В этой статье вы увидите, как P2300-модель Senders/Receivers в C++26 расширяет возможности std::async/std::future и позволяет строить ясные, декларативные конвейеры (then, when_all, upon_error и др.).

Читать далее

Каламический космологический аргумент и первопричина всего

Level of difficultyMedium
Reading time9 min
Views8.4K

Давайте я вам быстренько докажу наличие высшего существа, создавшего всё сущее.

  1. Всё, что когда-либо появлялось, имеет причину.
  2. Вселенная появилась в какой-то момент времени.
  3. Следовательно, Вселенная имеет причину — её кто-то создал.

Спасибо за внимание, хорошего вам дня.

Неубедительно? ОК, давайте раскроем аргумент поподробнее.
Читать дальше →

Язык мироздания — теория групп и теория категорий

Level of difficultyMedium
Reading time11 min
Views18K

Около полутора лет назад я опубликовал на Хабре статью под названием "Слово Божие — функциональное программирование как основа Вселенной", в которой я рассказывал про лямбда-исчисление и про то, как программу любой сложности можно свести к алгоритму на базе всего трёх SKI-комбинаторов или же одного единственного йота-комбинатора. В ней мы разобрались с алфавитом божественного языка, на котором написана книга мироздания. Теперь же пришло время разобраться с его грамматикой.

Читать далее

RAII 2.0: RAII как архитектурный инструмент в C++

Level of difficultyMedium
Reading time7 min
Views5.6K

Идиома RAII — давно зарекомендовал себя как удобный способ автоматического управления ресурсами в C++. Обычно мы применяем его для управления памятью, файловыми дескрипторами или мьютексами. Однако что, если расширить понятие RAII до управления не только физическими ресурсами, но и логическими контрактами и состояниями системы?

В этой статье я хочу поговорить о том, как RAII можно использовать для контроля жизненного цикла асинхронных операций, транзакций или подписок, гарантируя их корректное завершение или откат до прежнего состояния.

Читать далее

Game++. Work hard

Level of difficultyEasy
Reading time15 min
Views4.5K

Разнесение выполнения (concurrent) систем играют ключевую роль в играх — от обновления поведения ИИ и физики до рендеринга и загрузки ресурсов. Разные модели параллелизма позволяют по-разному организовать работу потоков, распределяя задачи и определяя, как потоки взаимодействуют между собой для достижения общей цели. Правильно выбранная модель влияет не только на производительность, но и зачастую на стабильность игры.

Модели выполнения используются разные — от простой многопоточности с ручной синхронизацией до более продвинутых систем акторов, job-based подходов или task graph. Например, системы поведения ИИ могут обновляться параллельно с физикой, пока основной поток отвечает за рендеринг. Некоторые движки, такие как Unreal Engine, используют task graph (граф задач), где зависимости между задачами выражаются явно, и задачи автоматически распределяются по доступным ядрам. Другие подходы, как в CryEngine Perth (аналог ECS, матрица задач), позволяют организовать данные так, чтобы минимизировать ложные зависимости и повысить кэш-эффективность. Конечный выбор всегда зависит от архитектуры движка, платформы и требований конкретной задачи или группы задач.

Читать далее

Хеш-таблица и C++20

Level of difficultyHard
Reading time6 min
Views8.1K

Рассматриваем различные «приколюхи» из C++20 на примере хеш‑мапы!

В статье я разобрал разные способы реализации тех или иных методов в хеш-мапе, так же провел небольшой анализ над ними. Статья является научно-просветительской и немного исследовательской.

Читать далее статьи от @SEIka69

Как правильно готовить std::span

Reading time6 min
Views6.8K

Сегодня мы поговорим про std::span и как не порезаться на острых углах C++.

Согласно определению на cppreference, шаблон класса span описывает объект, который может ссылаться на непрерывную последовательность объектов, где первый элемент последовательности находится на позиции ноль.

Вообще, с учётом того, что, начиная с С++17 мы уже знакомы с понятием string_view, можно представить, что std::span — это нечто подобное, только действующее для непрерывных участков памяти, которые ещё можно и модифицировать. Но не будем забегать вперед, обо всех свойствах по-порядку.

Читать далее

Game++. Unpacking containers

Level of difficultyEasy
Reading time40 min
Views4.2K

Независимо от того, начинаете ли вы разрабатывать свою игру или присоединяетесь к уже существующему проекту, когда приходит время оптимизировать память и заниматься разным улучшайзингом, то всегда встают одни и те же вопросы. Стоит ли использовать собственные контейнеры? Если использовать свои, то какой лучше выбрать - похожий на vector, или больше подойдет map? Является ли связный список наилучшим выбором при частых вставках и удалениях элементов? А откуда эти вставки вообще взялись, но это конечно другой вопрос.

В большинстве случаев студии начинают реализовывать свои решения, заточенные под игру, это со временем приводит к появлению библиотеки решений, а частенько и полной замене всего STL стека. Основная причина - это добиться непрерывного размещения элементов в памяти, чтобы максимизировать локальность кэша при их обходе. Надеюсь, понятно для чего это делают: часто быстрее обойти 1000 элементов, которые лежат друг за другом, чем дюжину, которая раскидана по разным частям оперативки.

Если вы не готовы писать и поддерживать свою STL, старайтесь, использовать vector, он хотя бы предсказуем по времени на всех платформах. Так вам скажет большинство разработчиков игр на C++, но проблема в том, что vector перераспределяет хранимые объекты в памяти при вставке новых элементов, а также при удалении любого элемента, кроме последнего. Это означает, что указатели на элементы вектора становятся недействительными, и тогда все зависимости и взаимодействия между элементами перестают работать.

Конечно, можно обращаться к элементам через индексы вместо указателей, но индексы тоже теряют актуальность при вставке или удалении элементов не с конца контейнера. К тому же, аллокация памяти тоже небесплатная и может сильно подкосить перф при неправильном использовании. Да, вектора много где выигрывают у других контейнеров, но не одним только вектором жив игрострой, у нас есть кое-что и побыстрее и постабильнее.

Читать далее

Стековые канарейки и где они обитают. Приручаем один из ключевых харденингов

Level of difficultyMedium
Reading time11 min
Views2.4K

Хабр, привет! Меня зовут Мария Недяк, я специализируюсь на разработке харденингов нашей собственной микроядерной операционной системы «Лаборатории Касперского» KasperskyOS. Если вкратце: мы стараемся сделать любые атаки на нашу ОС невозможными — или хотя бы очень дорогими :-)

Один из главных инструментов в нашей нелегкой работе — «канарейка» (ну или Stack Canary), которая защищает от базовой атаки переполнения стека. Лично я к работе с этой птичкой уже давно привыкла — набила руку во время многократных CTF-турниров, где без такого харденинга было никуда… Этот бэкграунд очень пригодился мне в «Лаборатории Касперского», когда перед нашей командой встала задача усилить «канарейку» в KasperskyOS.

В статье я подробно объясню, как работает Stack Canary, как ее ломают — и как от этих методов взлома защититься. Сразу скажу: тема непростая, так что для самых любопытных я оставила список полезной литературы в конце текста. Поехали!

Читать далее

Планировщик Go — самый подробный гайд простым языком

Level of difficultyMedium
Reading time27 min
Views65K

Давайте спроектируем с нуля планировщик Go — начнём с самой простой и понятной наивной реализации, а затем шаг за шагом будем разбираться, какие изъяны в ней есть, и придумывать как их решать, постепенно усложняя общую модель.

Это один из лучших способов понять сложную систему или концепцию — пройти путь её поэтапного проектирования. Система сложна, осознать её очень непросто, но мы разобьём её на простые шаги, понять которые очень легко. После этого пазл сам собой сложится в голове, и общая картина системы будет для вас такой же простой и очевидной.

Приступить к проектированию

Фрактальное самоподобие Вселенной и бесконечная вложенность материи – правда или миф?

Level of difficultyMedium
Reading time22 min
Views11K

В наши дни вряд ли найдется человек, который не созерцал залипательные изображения, гифки или видео с фракталами. Они завораживают своей красотой, гармоничными пропорциями и масштабной инвариантностью – сохранением узнаваемой формы при отдалении и приближении. В эзотерической литературе довольно часто можно встретить утверждение, что всё в природе имеет фрактальную структуру, а значит, за этим стоит универсальный принцип всеединства и великого фрактального подобия. Или же существует некий глубинный уровень реальности, а то, что мы видим – лишь отражение мира идей, фрактальная голограмма. Тут же обязательно вспоминают золотое сечение, герметическую формулу «как вверху, так и внизу», мысли античных философов о подобии микрокосма и макрокосма, сходство нейронных связей мозга с паутиной галактических скоплений и т.д. И каждый, кто не поленится сравнить компьютерные модели фракталов с реальными контурами береговых линий или кронами деревьев, невольно начинает верить в сакральную геометрию, высшую гармонию природы и бесконечное самоподобие космоса. Мы же подойдём к вопросу более трезво и выясним, что из этого является правдой, а что – мифами.

Читать далее

Алгоритмы манипуляций с битами

Level of difficultyMedium
Reading time13 min
Views18K

в статье приведены алгоритмы обработки коротких битовых строк, обычно вмещающихся в машинное слово, в большей степени эти алгоритмы предназначены для обработки строк длины 32 или 64, но многие из них можно применять для SIMD инструкций или даже GPU.

Читать далее

Пишем графический ASCII-калькулятор с помощью стандартной библиотеки Си

Level of difficultyHard
Reading time17 min
Views17K

Программа calculator.c родилась как школьный проект в рамках Student Innovation Scholarship. Сперва я решил написать простой инструмент для построения графиков функций с помощью символов ASCII, но после завершения первого прототипа понял, что задача намного сложнее, чем предполагалось. Вернувшись к проекту год спустя, я увидел, что в нём есть много неочевидных нюансов. Поэтому предлагаю разобрать весь процесс разработки моего графического калькулятора с нуля.


Читать дальше →

Как уместить поиск по 30 тысячам слов в 64 КБ ОЗУ

Level of difficultyMedium
Reading time17 min
Views9.7K

Как уместить словарь размером 250 КБ в 64 КБ ОЗУ с возможностью выполнения быстрого поиска? Для справки: даже современные методики сжатия наподобие gzip -9 не могут сжать этот файл до размера меньше 85 КБ.

В 1970-х Дуглас Макилрой столкнулся с этой непростой задачей при реализации проверки правописания для Unix в AT&T. Из-за ограничений компьютера PDP-11 весь словарь должен был умещаться всего в 64 КБ ОЗУ. Кажется, подобную задачу решить невозможно.

Вместо того, чтобы использовать стандартные методики сжатия, Дуглас воспользовался преимуществами свойств данных, разработав алгоритм сжатия, отличавшийся от теоретического минимума сжатия всего на 0,03 бита. И по сей день этот рекорд остаётся непревзойдённым.

История spell в Unix — это не только любопытный исторический факт. Это мастер-класс по проектированию в условиях жёстких ограничений: анализа первооснов задачи, применения математических наблюдений и проектирования изящных решений, работающих в условиях строгого дефицита ресурсов.

Читать далее

C++26 — встреча ISO в Хагенберге

Level of difficultyMedium
Reading time8 min
Views21K
В середине февраля в Хагенберге состоялась встреча международного комитета по стандартизации языка программирования C++.



В этот раз прорабатывались следующие большие темы:
  • std::hive
  • Constexpr, ещё больше constexpr
  • Безопасность, контракты, hardening, профили, UB и std::launder
  • Relocate
  • #embed

Об этом и других новинках расскажу в посте

Game++. Juggling STL algorithms

Level of difficultyEasy
Reading time29 min
Views5K

Мы все пишем циклы, в каждом софте, в каждой игре они будут. Вы не можете обойтись без них. Скажете, что делает этот код?

stl::vector numbers = {1, 2, 3, 4, 5};
int sum = 0;
for (int num : numbers) {
sum += num;
}

Конечно, это просто: код суммирует элементы массива. Похожую задачу про суммирование или другую операцию над массивом мой лид даёт на собесах :) Люди смотрят с удивлением, а потом большинство пишут, вот то, что было выше. И тут три вещи - человек либо поленился прочитать про STL алгоритмы, либо не доверяет нам и знает про них, но думает что не поймем мы, либо знает, но не понимает зачем показываеть эти знания, почему? вопрос оставим открытым. Этот пример с циклом - простейший алгоритм.

Алгоритмы STL — это настоящий швейцарский нож для разработчика. Они не просто помогают писать код, а делают его чище, понятнее и надежнее. В проектах с большими кодовыми базами, где легаси код не всегда стабилен и удобен для поддержки, это особенно важно. Каждый, кто писал циклы вручную, сталкивался с ошибками: вылезли за границы массива, забыли обработать пустой контейнер, сделали лишнее копирование. STL-алгоритмы избавляют от многих проблем, позволяя выразить мысли кратко и четко. Вместо простыней кода с индексами — несколько строк с понятным смыслом. Так что, если вы еще не знакомы со стандартными алгоритмами, самое время это исправить. Это один из тех инструментов, которые однажды освоив, уже невозможно забыть, это как езда на велосипеде, хорошем промышленном велике, за авторством Кнута или Саттера - надежном и с серийным номером.

Читать далее

Game++. Dancing with allocators

Level of difficultyEasy
Reading time34 min
Views13K

C и C++ не имеют встроенной сборки мусора, поэтому разработчик сам решает, как и когда выделять и освобождать память. Мы, конечно, можем покивать в сторону STL, сокрытия аллокаций в контейнерах, но от этого они никуда не денутся. Просто если раньше приходилось думать про выделенный кусок памяти, понимать, как он скажется на времени фрейма, помнить, что его надо удалить (а может, не надо и стоит оставить на следующий фрейм), то теперь всё заворачивается в сахарные контейнеры и разработку в стиле STL-blin-vse-sterpit. STL-то может и стерпит, и даже как-то будет ворочаться, однако не стоит полагаться исключительно на системный аллокатор, бездумно вызывая new или malloc для каждого запроса памяти. Вы ведь понимаете, что std::vector посреди цикла или горячей функции — это плохая идея?

Кроме того, такая практика приводит к ожидаемым проблемам с производительностью даже в обычных приложениях, чего уж говорить про высоконагруженные системы или игры, которые претендуют на что-то быстрее 20 фреймов в секунду.

Пытаться оптимизировать код, который использует системные аллокаторы, — всё равно что сгребать листья в кучу ветреным днём: куча, конечно, сгребается, но постоянно приходится махать грабельками, чтобы она оставалась на одном месте. Даже если выделения памяти происходят последовательно, друг за другом, вот прям без всяких перерывов, нет гарантии, что эти участки будут расположены хотя бы близко друг к другу. В результате при обработке таких данных процессору приходится прыгать по разным участкам памяти, теряя такты просто на поиск данных вместо того, чтобы работать с ними.

Я отнюдь не призываю вас встать на путь ручного управления памятью, ибо он будет усеян ловушками, граблями и чреват утечками. Но разработчик в итоге оказывается перед выбором: либо довериться системному аллокатору и столкнуться с проблемами вроде размазанного перфа, когда вроде и код написан правильно, модно и молодежно, но отчего-то работает небыстро, либо взять всё в свои руки, создавая собственные механизмы выделения и освобождения ресурсов.

Ребята из HFT, Database, Automotive и Embedded-систем наверняка могут рассказать немало интересных историй про оптимизацию new/delete. Давайте я расскажу немного про разные аллокаторы в играх?

Аллокатор аллокатору аллокации аллоцировал

Game++. Cooking vectors

Level of difficultyEasy
Reading time12 min
Views6.9K

В разработке игр динамические и статические массивы являются основным инструментом при работе с набором объектов, буду дальше называть их vector. Вы можете подумать про разные map, set, и другие ускоряющие структуры, но их тоже предпочитают делать поверх векторов. Почему так? Вектора просты для понимания, удобны для большого числа задач, особенно там, где объём данных заранее неизвестен или примерно известен. Но как вы понимаете, за все надо платить, и расплачиваться приходится производительностью, которой, как обычно, всегда не хватает. Так что, использование динамических массивов имеет свои ограничения и особенности.

Читать далее

Information

Rating
3,981-st
Location
Москва, Москва и Московская обл., Россия
Date of birth
Registered
Activity