Pull to refresh
30
0
Никита Галушко @jetu

Software developer

Send message

Разбираемся с новым sync.Map в Go 1.9

Reading time7 min
Views83K

Одним из нововведений в Go 1.9 было добавление в стандартную библиотеку нового типа sync.Map, и если вы ещё не разобрались что это и для чего он нужен, то эта статья для вас.


Для тех, кому интересен только вывод, TL;DR:


если у вас высоконагруженная (и 100нс решают) система с большим количеством ядер процессора (32+), вы можете захотеть использовать sync.Map вместо стандартного map+sync.RWMutex. В остальных случаях, sync.Map особо не нужен.


Если же интересны подробности, то давайте начнем с основ.

Читать дальше →
Total votes 26: ↑24 and ↓2+22
Comments26

Дом, милый дом: нюансы работы с ClickHouse. Часть 2, репликация

Level of difficultyMedium
Reading time12 min
Views6.8K

Всем привет, меня зовут Пётр. В первой части этого цикла статей мы взглянули на некоторые базовые концепции ClickHouse. В этой же статье продолжим изучать тонкости работы с этой колоночной базой данных и подробно рассмотрим такой аспект как репликация. А ещё разберёмся с сервисами координации Zookeeper и ClickHouse Keeper.

Давайте разбираться!
Total votes 8: ↑8 and ↓0+9
Comments1

MVCC-1. Изоляция

Reading time25 min
Views149K
Привет, Хабр! Этой статьей я начинаю серию циклов (или цикл серий? в общем, задумка грандиозная) о внутреннем устройстве PostgreSQL.

Материал будет основан на учебных курсах по администрированию, которые делаем мы с Павлом pluzanov. Смотреть видео не все любят (я точно не люблю), а читать слайды, пусть даже с комментариями, — совсем «не то».

Конечно, статьи не будут повторять содержание курсов один в один. Я буду говорить только о том, как все устроено, опуская собственно администрирование, зато постараюсь делать это более подробно и обстоятельно. И я верю в то, что такие знания полезны прикладному разработчику не меньше, чем администратору.

Ориентироваться я буду на тех, кто уже имеет определенный опыт использования PostgreSQL и хотя бы в общих чертах представляет себе, что к чему. Для совсем новичков текст будет тяжеловат. Например, я ни слова не скажу о том, как установить PostgreSQL и запустить psql.

Вещи, о которых пойдет речь, не сильно меняются от версии к версии, но использовать я буду текущий, 11-й «ванильный» PostgreSQL.

Первый цикл посвящен вопросам, связанным с изоляцией и многоверсионностью, и план его таков:

  1. Изоляция, как ее понимают стандарт и PostgreSQL (эта статья);
  2. Слои, файлы, страницы — что творится на физическом уровне;
  3. Версии строк, виртуальные и вложенные транзакции;
  4. Снимки данных и видимость версий строк, горизонт событий;
  5. Внутристраничная очистка и HOT-обновления;
  6. Обычная очистка (vacuum);
  7. Автоматическая очистка (autovacuum);
  8. Переполнение счетчика транзакций и заморозка.

Ну, поехали.
Читать дальше →
Total votes 34: ↑34 and ↓0+34
Comments47

Как сервера договариваются друг с другом: алгоритм распределённого консенсуса Raft

Reading time9 min
Views34K
Когда кластеры достигают размеров в сотни, а иногда и тысячи машин, возникает вопрос о согласованности состояний серверов относительно друг друга. Алгоритм распределённого консенсуса Raft даёт самые строгие гарантии консистентности из возможных. В этой статье мы рассмотрим Raft с точки зрения инженера и постараемся ответить на вопросы «Как?» и «Почему?» он работает.



Читать дальше →
Total votes 35: ↑33 and ↓2+31
Comments23

Inside The JeMalloc. Базовые Структуры Данных: Pairing Heap & Bitmap Tree

Reading time7 min
Views7.3K
image

Тема Аллокаторов частенько всплывает на просторах интернета: действительно, аллокатор — эдакий краеугольный камень, сердце любого приложения. В этой серии постов я хочу в подробностях рассказать о одном весьма занимательном и именитом аллокаторе — JeMalloc, поддерживаемый и развиваемый Facebook и используемый, например, в bionic[Android] lib C.

В сети мне не удалось найти каких-либо подробностей, полностью раскрывающих душу данного аллокатора, что по итогу сказалось на невозможности сделать какие-либо выводы о применимости JeMalloc при решении той или иной задачи. Материала вышло очень много и, дабы читать его было не утомительно, начать предлагаю с основ: Базовых Структур Данных используемых в JeMalloc.

Под катом рассказываю о Pairing Heap и Bitmap Tree, формирующих фундамент JeMalloc. На данном этапе я не затрагиваю тему многопоточности и Fine Grained Locking, однако, продолжая серию постов, обязательно расскажу про эти вещи, ради которых, собственно, и создается разного рода Экзотика, в частности и та, что описывается ниже.
Читать дальше →
Total votes 17: ↑17 and ↓0+17
Comments1

Книга «React быстро. Веб-приложения на React, JSX, Redux и GraphQL»

Reading time9 min
Views16K
image Привет, Хаброжители! Оригинальное издание вышло осенью 2017 года, но до сих пор считается лучшей книгой для знакомства с React. Автор постоянно обновляет и дорабатывает код к книги в репозитории Github.

Предлагаем в посте ознакомится с отрывком «Состояния и их роль в интерактивной природе React»

Если бы вам пришлось прочитать в этой книге всего одну главу — стоило бы выбрать именно эту! Без состояний компоненты React остаются не более чем усовершенствованными статическими шаблонами. Надеюсь, вы разделяете мой энтузиазм, потому что понимание концепций этой главы позволит вам строить намного более интересные приложения.

Читать дальше →
Total votes 8: ↑8 and ↓0+8
Comments0

Функциональное мышление. Часть 6

Reading time5 min
Views6.5K

Продолжаем нашу серию статей о функциональном программировании на F#. Сегодня расскажем об ассоциативности и композиции функций, а также сравним композицию и конвейер. Заглядывайте под кат!



Читать дальше →
Total votes 10: ↑10 and ↓0+10
Comments0

Учебный курс по React, часть 1: обзор курса, причины популярности React, ReactDOM и JSX

Reading time14 min
Views191K
Представляем вашему вниманию первые 5 занятий учебного курса по React для начинающих. Оригинал курса на английском, состоящий из 48 уроков, опубликован на платформе Scrimba.com. Возможности этой платформы позволяют, слушая ведущего, иногда ставить воспроизведение на паузу и самостоятельно, в том же окне, в котором ведётся демонстрация, экспериментировать с кодом. Курс показался нам интересным, мы решили перевести его на русский и преобразовать в формат традиционных публикаций.



Полагаем, этот курс будет полезен всем, кто, что называется, «не умеет в React», но хочет научиться. В то же время, на то, чтобы превратить этот курс в обычные публикации, нужны немалые силы и время, поэтому мы, прежде чем принимать окончательное решение о запуске этого проекта, предлагаем всем желающим оценить курс и поучаствовать в опросе о целесообразности его перевода.
Читать дальше →
Total votes 28: ↑26 and ↓2+24
Comments60

Быстрый старт на React Native

Reading time2 min
Views54K

Какие горизонты открывает React? Single Page Application (и веб-приложения, и десктопные приложения на Electron) — это цветочки. Очень заманчиво выглядит разработка мобильных приложений на React Native. Лозунг "learn once, write anywhere" стоит того, чтобы приложить некоторые усилия. Go!

Читать дальше →
Total votes 12: ↑9 and ↓3+6
Comments14

Полное практическое руководство по Docker: с нуля до кластера на AWS

Reading time39 min
Views1.7M



Содержание



Вопросы и ответы


Что такое Докер?


Определение Докера в Википедии звучит так:


программное обеспечение для автоматизации развёртывания и управления приложениями в среде виртуализации на уровне операционной системы; позволяет «упаковать» приложение со всем его окружением и зависимостями в контейнер, а также предоставляет среду по управлению контейнерами.



Ого! Как много информации.

Читать дальше →
Total votes 125: ↑124 and ↓1+123
Comments44

Визуализация процесса обучения нейронной сети средствами TensorFlowKit

Reading time5 min
Views23K
Hint
Перед прочтением этой статьи советую ознакомиться с предыдущей статьей о TensorFlowKit и поставить star репозиторию.

Я не люблю читать статьи, сразу иду на GitHub
GitHub: TensorFlowKit
GitHub: Example
GitHub: Другое
TensorFlowKit API
Посeтив репозиторий, добавьте его в «Stars» это поможет мне написать больше статей на эту тему.

image

Начиная работать в сфере машинного обучения, мне было тяжело переходить от объектов и их поведений к векторам и пространствам. Сперва все это достаточно тяжело укладывалось в голове и далеко не все процессы казались прозрачными и понятными с первого взгляда. По этой причине все, что происходило внутри моих наработок, я пробовал визуализировать: строил 3D модели, графики, диаграммы, изображения и тд.

Говоря об эффективной разработке систем машинного обучения, всегда поднимается вопрос контроля скорости обучения, анализа процесса обучения, сбора различных метрик обучения и тд. Особая сложность заключается в том, что мы (люди) привыкли оперировать 2х и 3х мерными пространствами, описывая различные процессы вокруг нас. Процессы внутри нейронных сетей происходят в многомерных пространствах, что серьезно усложняет их понимание. Осознавая это, инженеры по всему миру стараются разработать различные подходы к визуализации или трансформации многомерных данных в более простые и понятные формы.

Существуют целые сообщества, решающие такого рода задачи, например Distill, Welch Labs, 3Blue1Brown.

Читать дальше →
Total votes 27: ↑24 and ↓3+21
Comments14

Kaggle: Британские спутниковые снимки. Как мы взяли третье место

Reading time22 min
Views42K

Сразу оговорюсь, что данный текст — это не сухая выжимка основных идей с красивыми графиками и обилием технических терминов (такой текст называется научной статьей и я его обязательно напишу, но потом, когда нам заплатят призовые $20000, а то, не дай бог, начнутся разговоры про лицензию, авторские права и прочее.) (UPD: https://arxiv.org/abs/1706.06169). К моему сожалению, пока устаканиваются все детали, мы не можем поделиться кодом, который написали под эту задачу, так как хотим получить деньги. Как всё утрясётся — обязательно займемся этим вопросом. (UPD: https://github.com/ternaus/kaggle_dstl_submission)

Так вот, данный текст — это скорее байки по мотивам, в которых, с одной стороны, всё — правда, а с другой, обилие лирических отступлений и прочей отсебятины не позволяет рассматривать его как что-то наукоемкое, а скорее просто как полезное и увлекательное чтиво, цель которого показать, как может происходить процесс работы над задачами в дисциплине соревновательного машинного обучения. Кроме того, в тексте достаточно много лексикона, который специфичен для Kaggle и что-то я буду по ходу объяснять, а что-то оставлю так, например, вопрос про гусей раскрыт не будет.
Total votes 74: ↑74 and ↓0+74
Comments42

Раскрашиваем чёрно-белую фотографию с помощью нейросети из 100 строк кода

Reading time22 min
Views77K

Перевод статьи Colorizing B&W Photos with Neural Networks.

Не так давно Амир Авни с помощью нейросетей затроллил на Reddit ветку /r/Colorization, где собираются люди, увлекающиеся раскрашиванием вручную в Photoshop исторических чёрно-белых изображений. Все были изумлены качеством работы нейросети. То, на что уходит до месяца работы вручную, можно сделать за несколько секунд.

Давайте воспроизведем и задокументируем процесс обработки изображений Амира. Для начала посмотрите на некоторые достижения и неудачи (в самом низу — последняя версия).
Total votes 62: ↑61 and ↓1+60
Comments35

«Правда, чистая правда и статистика» или «15 распределений вероятности на все случаи жизни»

Reading time15 min
Views260K
Статистика приходит к нам на помощь при решении многих задач, например: когда нет возможности построить детерминированную модель, когда слишком много факторов или когда нам необходимо оценить правдоподобие построенной модели с учётом имеющихся данных. Отношение к статистике неоднозначное. Есть мнение, что существует три вида лжи: ложь, наглая ложь и статистика. С другой стороны, многие «пользователи» статистики слишком ей верят, не понимая до конца, как она работает: применяя, например, тест Стьюдента к любым данным без проверки их нормальности. Такая небрежность способна порождать серьёзные ошибки и превращать «поклонников» теста Стьюдента в ненавистников статистики. Попробуем поставить точки над i и разобраться, какие модели случайных величин должны использоваться для описания тех или иных явлений и какая между ними существует генетическая связь.
Читать дальше →
Total votes 39: ↑36 and ↓3+33
Comments29

Выявление скрытых зависимостей в данных для повышения качества прогноза в машинном обучении

Reading time19 min
Views15K

План статьи


  1. Постановка задачи.
  2. Формальное описание задачи.
  3. Примеры задач.
  4. Несколько примеров на синтетических данных со скрытыми линейными зависимостями.
  5. Какие ещё скрытые зависимости могут содержаться в данных.
  6. Автоматизация поиска зависимостей.

  • Число признаков меньше пороговой величины.
  • Число признаков превышает пороговую величину.

Постановка задачи


Нередко в машинном обучении встречаются ситуации, когда данные собираются априори, и лишь затем возникает необходимость разделить некоторую выборку по известным классам. Как следствие часто может возникнуть ситуация, когда имеющийся набор признаков плохо подходит для эффективной классификации. По крайней мере, при первом приближении.

В такой ситуации можно строить композиции слабо работающих по отдельности методов, а можно начать с обогащения данных путём выявления скрытых зависимостей между признаками. И затем строить на основе найденных зависимостей новые наборы признаков, некоторые из которых могут потенциально дать существенный прирост качества классификации.

Формальное описание задачи


Перед нами ставится задача классификации L объектов, заданных n вещественными числами. Мы будем рассматривать простой двухклассовый случай, когда метки классов — это −1 и +1. Наша цель — построить линейный классификатор, то есть такую функцию, которая возвращает −1 или + 1. При этом набор признаковых описаний таков, что для объектов противоположных классов, измеренных на данном множестве признаков, практически не работает гипотеза компактности, а разделяющая гиперплоскость строится крайне неэффективно.

Иными словами, всё выглядит так, будто задача классификации на данном множестве объектов не может быть решена эффективно.
Читать дальше →
Total votes 10: ↑9 and ↓1+8
Comments0

Как попасть в топ на Kaggle, или Матрикснет в домашних условиях

Reading time9 min
Views32K
Хочу поделиться опытом участия в конкурсе Kaggle и алгоритмами машинного обучения, с помощью которых добрался до 18-го места из 1604 в конкурсе Avazu по прогнозированию CTR (click-through rate) мобильной рекламы. В процессе работы попытался воссоздать оригинальный алгоритм Мактрикснета, тестировал несколько вариантов логистической регрессии и работал с характеристиками. Обо всём этом ниже, плюс прикладываю полный код, чтобы можно было посмотреть, как всё работает.

Рассказ делю на следующие разделы:
1. Условия конкурса;
2. Создание новых характеристик;
3. Логистическая регрессия – прелести адаптивного градиента;
4. Матрикснет – воссоздание полного алгоритма;
5. Ускорение машинного обучения в Python.
Читать дальше →
Total votes 42: ↑41 and ↓1+40
Comments21

Делаем сервис по распознаванию изображений с помощью TensorFlow Serving

Reading time12 min
Views34K

image

Всегда наступает то самое время, когда обученную модель нужно выпускать в production. Для этого часто приходится писать велосипеды в виде оберток библиотек машинного обучения. Но если Ваша модель реализована на Tensorflow, то у меня для Вас хорошая новость — велосипед писать не придется, т.к. можно использовать Tensorflow Serving.


В данной статье мы рассмотрим как использовать Tensorflow Serving для быстрого создания производительного сервиса по распознаванию изображений.

Читать дальше →
Total votes 38: ↑38 and ↓0+38
Comments3

Наивный Байесовский классификатор в 25 строк кода

Reading time3 min
Views89K
Наивный Байесовский классификатор один из самых простых из алгоритмов классификации. Тем не менее, очень часто он работает не хуже, а то и лучше более сложных алгоритмов. Здесь я хочу поделиться кодом и описанием того, как это все работает.

И так, для примера возьму задачу определения пола по имени. Конечно, чтобы определить пол можно создать большой список имен с метками пола. Но этот список в любом случае будет неполон. Для того чтобы решить эту проблему, можно «натренировать» модель по маркированным именам.
Если интересует, прошу
под кат
Total votes 37: ↑37 and ↓0+37
Comments24

Как заставить работать бинарный классификатор чуточку лучше

Reading time6 min
Views48K
Disclaimer: пост написан по мотивам данного. Я подозреваю, что большинство читателей прекрасно знает, как работает Наивный Байесовский классификатор, поэтому предлагаю лишь мельком хотя бы глянуть на то, о чём там говорится, перед тем как переходить под кат.

Решение задач с помощью алгоритмов машинного обучения давно и прочно вошло в нашу жизнь. Это произошло по всем понятным и объективным причинам: дешевле, проще, быстрее, чем явно кодить алгоритм решения каждой отдельной задачи. До нас, обычно, доходят «черные ящики» классификаторов (вряд ли тот же ВК предложит вам свой корпус размеченных имен), что не позволяет ими управлять в полной мере.
Здесь я бы хотел рассказать о том, как попробовать добиться «лучших» результатов работы бинарного классификатора, о том какие характеристики бинарный классификатор имеет, как их измерять, и как определить, что результат работы стал «лучше».
Читать дальше →
Total votes 16: ↑16 and ↓0+16
Comments9

Введение в алгоритм A*

Reading time10 min
Views187K
При разработке игр нам часто нужно находить пути из одной точки в другую. Мы не просто стремимся найти кратчайшее расстояние, нам также нужно учесть и длительность движения. Передвигайте звёздочку (начальную точку) и крестик (конечную точку), чтобы увидеть кратчайший путь. [Прим. пер.: в статьях этого автора всегда много интерактивных вставок, рекомендую сходить в оригинал статьи.]


Для поиска этого пути можно использовать алгоритм поиска по графу, который применим, если карта представляет собой граф. A* часто используется в качестве алгоритма поиска по графу. Поиск в ширину — это простейший из алгоритмов поиска по графу, поэтому давайте начнём с него и постепенно перейдём к A*.
Total votes 70: ↑69 and ↓1+68
Comments20
1
23 ...

Information

Rating
Does not participate
Location
Россия
Works in
Date of birth
Registered
Activity