Pull to refresh
7
0

42

Send message

Modulo Camera не умеет снимать засвеченные фотографии

Reading time2 min
Views15K


Проблемы с передержанными фотографиями навсегда уйдут в прошлое, если разработка специалистов из Массачусетского технологического института окажется так хороша, как её описывают на сайте института. А это вполне возможно: не зря научная работа заняла почётное второе место на Международной конференции по вычислительным методам в фотографии (2015 International Conference on Computational Photography).

Новая фотокамера Modulo Camera с расширенным динамическим диапазоном (High Dynamic Range) делает отличные снимки независимо от условий освещения. Самые тёмные и самые светлые объекты в кадре будут одинаково хорошо детализированы.
Читать дальше →

Нейропластичность в искусственных нейронных сетях

Reading time17 min
Views53K
Привет, Хабр, давно не виделись. В этом посте мне хотелось бы рассказать о таком относительно новом понятии в машинном обучении, как transfer learning. Так как я не нашел какого-либо устоявшегося перевода этого термина, то и в названии поста фигурирует хоть и другой, но близкий по смыслу термин, который как бы является биологической предпосылкой к формализации теории передачи знаний от одной модели к другой. Итак, план такой: для начала рассмотрим биологические предпосылки; после коснемся отличия transfer learning от очень похожей идеи предобучения глубокой нейронной сети; а в конце обсудим реальную задачу семантического хеширования изображений. Для этого мы не будем скромничать и возьмем глубокую (19 слоев) сверточную нейросеть победителей конкурса imagenet 2014 года в разделе «локализация и классификация» (Visual Geometry Group, University of Oxford), сделаем ей небольшую трепанацию, извлечем часть слоев и используем их в своих целях. Поехали.
Читать дальше →

Алгоритм Улучшенной Самоорганизующейся Растущей Нейронной Сети (ESOINN)

Reading time6 min
Views34K

Введение


В моей предыдущей статье о методах машинного обучения без учителя был рассмотрен базовый алгоритм SOINN — алгоритм построения самоорганизующихся растущих нейронных сетей. Как было отмечено, базовая модель сети SOINN имеет ряд недостатков, не позволяющих использовать её для обучения в режиме lifetime (т.е. для обучения в процессе всего срока эксплуатации сети). К таким недостаткам относилась двухслойная структура сети, требующая при незначительных изменениях в первом слое сети переобучать второй слой полностью. Также алгоритм имел много настраиваемых параметров, что затрудняло его применение при работе с реальными данными.

В этой статье будет рассмотрен алгоритм An Enhanced Self-Organizing Incremental Neural Network, являющийся расширением базовой модели SOINN и частично решающий озвученные проблемы.
Читать дальше →

Простыми словами о преобразовании Фурье

Level of difficultyMedium
Reading time14 min
Views1.1M
Я полагаю что все в общих чертах знают о существовании такого замечательного математического инструмента как преобразование Фурье. Однако в ВУЗах его почему-то преподают настолько плохо, что понимают как это преобразование работает и как им правильно следует пользоваться сравнительно немного людей. Между тем математика данного преобразования на удивление красива, проста и изящна. Я предлагаю всем желающим узнать немного больше о преобразовании Фурье и близкой ему теме того как аналоговые сигналы удается эффективно превращать для вычислительной обработки в цифровые.

image (с) xkcd

Без использования сложных формул и матлаба я постараюсь ответить на следующие вопросы:
  • FT, DTF, DTFT — в чем отличия и как совершенно разные казалось бы формулы дают столь концептуально похожие результаты?
  • Как правильно интерпретировать результаты быстрого преобразования Фурье (FFT)
  • Что делать если дан сигнал из 179 сэмплов а БПФ требует на вход последовательность по длине равную степени двойки
  • Почему при попытке получить с помощью Фурье спектр синусоиды вместо ожидаемой одиночной “палки” на графике вылезает странная загогулина и что с этим можно сделать
  • Зачем перед АЦП и после ЦАП ставят аналоговые фильтры
  • Можно ли оцифровать АЦП сигнал с частотой выше половины частоты дискретизации (школьный ответ неверен, правильный ответ — можно)
  • Как по цифровой последовательности восстанавливают исходный сигнал


Я буду исходить из предположения что читатель понимает что такое интеграл, комплексное число (а так же его модуль и аргумент), свертка функций, плюс хотя бы “на пальцах” представляет себе что такое дельта-функция Дирака. Не знаете — не беда, прочитайте вышеприведенные ссылки. Под “произведением функций” в данном тексте я везде буду понимать “поточечное умножение”

Итак, приступим?

Нейронные сети и распознавание символов

Reading time7 min
Views126K
В последнее время на Хабре появилось, а также существует много содержательных статей, описывающих работу и принцип понятия “нейронная сеть”, но, к сожалению, как всегда очень мало описания и разбора полученных практических результатов или их не получения. Я думаю, что многим, как и мне удобней, проще и понятней разбираться на реальном примере. Поэтому в данной статье постараюсь описать почти пошаговое решение задачи распознавания букв латинского алфавита + пример для самостоятельного исследования. Распознавание цифр с помощью однослойного персептрона уже сделано, теперь давайте еще разберёмся и научим компьютер распознавать буквы.
Немного желания и можно начинать...

Мелочи мышления или статья о дендритных шипиках

Reading time12 min
Views50K


Несколько месяцев назад был опубликован цикл статей под общим названием «Логика мышления». Оптимистично планировалось продолжить его через месяц-другой. Но жизнь внесла свои коррективы. Моделирование паттерно-волновой модели коры дало настолько интересные результаты, что пришлось на время отложить все остальное, в том числе и написание продолжения цикла для хабра.

Однако, не так давно я написал и выложил на препринт статью (http://arxiv.org/abs/1406.6901). В чем-то она может быть интересна тем, кто ранее заинтересовался волновой моделью. Напомню, что ключевой момент модели – это утверждение, что нейроны способны запоминать и узнавать не один единственный образ, описываемый весами его синапсов, а еще и огромное количество других отличных от этого образа сигналов. Конечно, такое усложнение нейрона идет в разрез со многими существующими теориями и требует более, чем серьезного обоснования. Ниже я, как раз, и попробую описать один из приведенных в статье аргументов в пользу моей модели.
Читать дальше →

Применение нейросетей в распознавании изображений

Reading time10 min
Views244K
Про нейронные сети, как один из инструментов решения трудноформализуемых задач уже было сказано достаточно много. И здесь, на хабре, было показано, как эти сети применять для распознавания изображений, применительно к задаче взлома капчи. Однако, типов нейросетей существует довольно много. И так ли хороша классическая полносвязная нейронная сеть (ПНС) для задачи распознавания (классификации) изображений?
Читать дальше →

Syllable OS

Reading time3 min
Views563
Уже прошли времена, когда Windows для основной массы пользователей ПК представлялась единственно возможным вариантом. Сегодня, пожалуй, никого не удивить установленной Linux, и даже стильные маки с предустановленной Mac OS X все привычнее смотрятся на ваших с нами столах. И, вполне возможно, в будущем выбор ОС не только расширится, но и избавит от проблем с выбором софта, благодаря эмуляции, виртуализации и появлению версий привычных программ под другие системы. Благо, разработчики стараются. Посмотрите только на темпы развития Mono. И это только один пример!

Но я хотел поднять другую тему…
Читать дальше →

Information

Rating
Does not participate
Registered
Activity