Обновить
24.91

Data Mining *

Глубинный анализ данных

Сначала показывать
Порог рейтинга
Уровень сложности

Метрики для задач NLP. Часть 2. Генерация текста: BLEU, ROUGE, METEOR, BERTScore

Уровень сложностиСредний
Время на прочтение17 мин
Охват и читатели4.8K

В этой статье будет рассказано о популярных метриках оценки для задач генерации текста: BLEU, ROUGE, METEOR, BERTScore. Рассказ будет сопровождаться визуализацией, примерами и кодом на Python.

🔥 Начинаем 🔥

Новости

Пилот взлететел, полет нормальный

Уровень сложностиПростой
Время на прочтение15 мин
Охват и читатели6.8K

А никто не обещал, что на хакатоне будет легко.

Небольшой репортажэ, про то как мы проводили Хакатон сред студентов по машинному обучению и анализу данных. Реальный разбор подготовки, фишки, плюсы и работа на хакатоне глазами организаторов.

Читать далее

Wikontic: строим графы из текстов, используя онтологию и LLM

Уровень сложностиСложный
Время на прочтение17 мин
Охват и читатели6.2K

Привет, Хабр! Это Алла, я работаю исследователем в команде «Модели с памятью» Лаборатории когнитивных систем искусственного интеллекта Института AIRI и занимаюсь исследованиями на стыке графов знаний и языковых моделей. Ранее я уже писала на Хабре статью про построение графов знаний из текстов по мотивам одной из наших публикаций.

Мы активно продолжаем работать дальше и создали Wikontic — полноценный пайплайн для этой задачи. Недавно мы представляли его на интерактивной демо‑сессии на AAAI 2026 в Сингапуре — про это несколько дней назад вышел хабр от моего коллеги Айдара. Здесь я расскажу подробнее о том, как устроен новый пайплайн, и какие идеи пришли к нам в голову при его создании. 

Читать далее

Рассчитать биологический возраст? Можно, а зачем?

Уровень сложностиСредний
Время на прочтение20 мин
Охват и читатели5.8K

Привет Хабр! На связи снова Дмитрий Крюков, руководитель группы «Исследования биомаркеров» лаборатории «Сильный ИИ в медицине» Института AIRI. Недавно мы с коллегами выпустили статью в npj Aging, в которой изрядно покритиковали калькуляторы биологического возраста (они же часы старения) и попытались поставить под сомнение саму возможность и даже необходимость расчёта биологического возраста. 

О некоторых проблемах часов старения я уже писал здесь, но, по правде говоря, в тот раз я коснулся лишь верхушки айсберга. Чтобы продемонстрировать всю сложность и неоднозначность этого понятия и стоящих за ним математических определений, мне нужно рассказать эту историю в хронологическом и, наверное, логическом порядке (хотя некоторые детали я все же опущу для удобства восприятия) — и выход новой статьи стал для этого отличным поводом. 

Внимательно прочитав этот пост вы наверняка сможете сами рассчитать биологический возраст, при условии, что владеете минимальным кодингом (ну или хотя бы вайб‑кодингом). И, поверьте, у вас получится это не хуже, чем многих из тех, кто предлагают свои решения как сервис (примеры: [1, 2, 3, 4, 5, 6, 7]). С другой стороны, если вы прочитаете пост второй раз, вы скорее всего поймёте, что хорошо оценить биологический возраст на самом деле очень трудно и, возможно, не стоит даже пытаться.

Читать далее

Когда недостаточно ошибок I/II рода и нужно уточнить результат A/B теста

Уровень сложностиПростой
Время на прочтение6 мин
Охват и читатели6.4K

Для запуска А/В теста необходимым минимумом является фиксация ошибок первого и второго рода, расчет MDE (минимальный наблюдаемый эффект). Однако при расчете результатов теста далеко не всегда получается достичь MDE заданного размера, в таком случае статистическая значимость результатов не будет достигнута. Помимо этого даже при статистически значимом результате существует вероятность ошибки, при которой наши результаты являются выбросом или просто случайностью. Как быть в таком случае?

Узнать больше!

Собрать данные с автосимулятора: как Assetto Corsa стала живым датасетом

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели7.7K

229 заездов, 140 пилотов, 28 часов работы — столько данных мы собрали из Assetto Corsa за три дня SOC Forum 2025.

Мы превратили обычный гоночный симулятор в источник телеметрии: забирали данные из игры, строили дашборды в реальном времени и даже придумали ачивки для самых отчаянных пилотов.

Рассказываю, как устроен сбор данных из игровых симуляторов, что можно из них вытянуть и зачем это бизнесу.

Читать далее

Генетическое программирование: от теории к практике

Уровень сложностиСредний
Время на прочтение13 мин
Охват и читатели11K

Сегодня все говорят о больших языковых моделях и глубоком обучении, но помимо них существуют альтернативные методы, которые умеют находить нетривиальные решения и хорошо работают в самых разных задачах.

Что будет, если поручить эволюционному алгоритму самому «придумать» формулу? Разбираем генетическое программирование на наглядных примерах: от восстановления тригонометрических функций и символьной регрессии на реальном датасете до оптимизации структуры нейросетей — все эксперименты воспроизводимы в Google Colab.

Читать далее

Апокалипсис как датасет: провал и наследие Николая Морозова

Уровень сложностиПростой
Время на прочтение13 мин
Охват и читатели9.7K

В первой статье я рассказывал о Николае Морозове — человеке, который 21 год в одиночной камере превратил в аспирантуру. 26 томов, 11 языков, карьера до 92 лет.

Один из его принципов — любой доступный ресурс становится материалом для роста. Книг не давали, только Библию. Кто-то бы отчаялся. Морозов открыл Апокалипсис и начал искать в нём астрономию.

Из этого вырос самый спорный его проект — «новая хронология»: попытка пересчитать историю человечества через точные науки. Выводы оказались ошибочными. Но вопрос, который он задал — «можно ли проверять историю методами точных наук?» — оказался правильным.

Эта статья — о том, что случилось с Библией в руках естествоиспытателя. И о том, почему хороший метод не спасает от плохих выводов.

Читать далее

Гибридный поиск с QWEN3-Max и RoSBERTa или RAG на графах

Уровень сложностиСложный
Время на прочтение6 мин
Охват и читатели7.3K

Начало всех начальных начал 

Добрый день, уважаемые хабропоселенцы;‑) Сегодня мы будем говорить, снова о хакатонах и разработке RAG‑моделей, вернее моделей с RAG‑подходами и наших попытках выйти за рамки простого векторного поиска. Не так давно мы участвовали на всероссийском хакатоне «Альфа‑Будущее», организованным Альфа‑Банком и посвящённому настройке RAG для вопросно‑ответных систем. 

Нам необходимо было создать интеллектуальный pipeline RAG‑системы, которая по пользовательскому запросу находит релевантные фрагменты в корпусе данных. Вообще, было на выбор две задачи, вторая звучала как «Разработка copilot приложения для клиентов микробизнеса», но нам ближе оказалась вторая задача. И, конечно же, мы «запилили» своё «модное» решение, о котором вам спешим рассказать в этой статье. Мы проиллюстрируем, как выстраивали архитектуру, какие модели тестировали, на чём остановились и почему, именно такой подход оказался для нас наиболее удачным. Покажем, как работает весь пайплайн — от чанкования документов до гибридного поиска и поделимся результатами бенчмарков и планами развития системы в дальнейшем. Всех заинтересованных лиц приглашаю по традиции под кат;-)

Читать далее

Оптимизация маршрутов доставки заказов маркетплейса или как мы победили в E-CUP 2025

Время на прочтение11 мин
Охват и читатели3.8K

Хабр, привет! Недавно завершилось ML-соревнование E-CUP 2025. Наша команда из X5 Tech заняла первое место в треке «Логистика: автопланирование курьеров», где было нужно оптимизировать время, затрачиваемое курьерами на доставку 20 000 заказов. В статье расскажем про подходы, которые использовали для решения этой задачи. Посмотрим, во сколько раз можно сжать JSON с матрицей расстояний. Какой код мы использовали для быстрого решения задачи TSP с помощью LKH-3. Обсудим, на что обращать внимание при кластеризации заказов.

Постановка задачи

Требовалось распределить порядка 20 000 заказов между 280 курьерами и построить для каждого из них маршрут так, чтобы минимизировать их суммарное время работы. Оно складывалось из времени перемещения курьеров между заказами и времени выполнения самих заказов (service time). За каждый невыполненный заказ добавлялся штраф 3000 секунд...

Читать далее

Доматчинг товаров с использованием LLM: от промптов до квантизации

Уровень сложностиСложный
Время на прочтение9 мин
Охват и читатели7.8K

Привет, Хабр! На связи команда продуктового матчинга ecom.tech. Наша команда решает задачи поиска, группировки и сопоставления товаров с помощью алгоритмов машинного обучения. Все это необходимо для развития и улучшения бизнес-процессов в компании, а именно быстрого заведения карточек товаров, мониторинга цен на товары и развития ML. В этой статье мы расскажем про доматчинг – сравнение сложных пар товаров, которые отобрали на предыдущем этапе пайплайна, с помощью LLM. Поехали!

Читать далее

BLIMP — Пайплайн синтеза и разметки изображений в Blender

Уровень сложностиСредний
Время на прочтение25 мин
Охват и читатели6.3K

Генерация, понимание и редактирование реалистичных изображений – всё ещё сложнейшая задача для ИИ. Потому качественные данные сегодня на вес золота, а компании готовы тратить миллионы на труд разметчиков и API мастодонтов вроде Gemini Pro Image. Такой подход не только предельно дорог и ресурсозатратен – но и полон ошибок, которых не лишены даже “генеративные ИИ-гиганты”. 

Я хочу рассказать вам о другом, менее популярном сегодня методе сбора визуальных данных – автоматической сборке 3D-сцен и рендере их изображений. Конечно, и этот подход не лишен своих недостатков – но он быстр, дёшев и не так затратен, при этом он покрывает очень тяжёлые для современных моделей ниши. Такой метод позволяет детерминировано понимать и контролировать содержимое генерируемых данных с точностью до миллиметра. В этой статье мы с нуля построим полностью автоматический пайплайн формирования и генерации изображений и метаданных к ним в Blender – для задач генерации, понимания и редактирования изображений. А запускаться и работать он может на чём угодно – от GPU-серверов, до обычного домашнего ПК.

Погрузиться в Blender

Поведение вместо плотности: динамический взгляд на кластеризацию

Время на прочтение9 мин
Охват и читатели3.3K

Несмотря на использование биологических аналогий, предлагаемый метод не относится к quorum sensing clustering в классическом смысле.
В работах, вдохновлённых quorum sensing, сигнал напрямую связан с локальной плотностью и используется как механизм адаптивного выбора радиуса влияния или порога плотности. Фактически такие методы остаются плотностными моделями кластеризации с биологической мотивацией (см., например, arXiv:1303.3934).

В предлагаемом подходе сигнал имеет иную природу.
Он не отражает количество соседей и не служит индикатором принадлежности к кластеру, а представляет собой внутреннее бинарное состояние агента, определяющее режим его локального взаимодействия с окружением.

Кластеризация в этой модели не является результатом разбиения пространства по геометрическим признакам. Она возникает как побочный эффект динамики, в которой устойчивые коллективные режимы поведения формируются, стабилизируются и защищаются через локальные правила взаимодействия.

Читать далее

Ближайшие события

Индекс Шивы: ловушка простых правил на рынке труда

Время на прочтение7 мин
Охват и читатели8.9K

Если вакансия длиннее 7000 символов, шанс встретить в ней манипуляцию или хаос — 61.5%. Это правило «рынка лимонов» работает почти идеально.

Но оно же — ловушка.

Индекс Шивы (текст / зарплата) — это инструмент диагностики, который помогает отличить необходимую сложность от словесного шума. Датасет из 48 000 вакансий.

Читать далее

Три вечера, три круга ада и один MVP: как я создал анализатор памяти игры с помощью бесплатных чат-моделей

Уровень сложностиПростой
Время на прочтение11 мин
Охват и читатели9.2K

В эпоху ИИ-хайпа многие обещают, что теперь кодить не нужно — достаточно «поговорить» с моделью. Автор решил проверить это на практике: за три вечера, используя только бесплатные версии Claude и Qwen, он создал прототип приложения для мониторинга игровых событий в реальном времени через чтение памяти процесса Royal Quest.

Путь оказался тернистым: от неактуальных логов и зашифрованного трафика — к CheatEngine, Wine на macOS, PyInstaller и проблемам с кодировкой. Чат-модели помогли быстро сгенерировать ядро приложения, реализовать экспорт в JSON/TXT и даже простой дашборд, но каждая итерация сопровождалась багами, потерей контекста и переписыванием кода с нуля.

Делюсь честным опытом: где ИИ действительно ускорил разработку, а где превратил её в бесконечный цикл «запрос → правка → провал». В финале — практические рекомендации: как структурировать проект для ИИ, сохранять контекст и избегать типичных ловушек.

Результат — рабочий MVP, открытый на GitHub, и убедительный вывод: ИИ — мощный соавтор, но пока ещё не замена внимательному разработчику.

Читать далее

Рынок лимонов и «размалеванные барышни»: текст вакансии как честное зеркало компании (датасет 146 000 вакансий)

Уровень сложностиПростой
Время на прочтение6 мин
Охват и читатели11K

Пока соискателей учат быть «размалеванными барышнями», работодатели на «рынке лимонов» никому ничего не должны. Можно ли узнать, что ждет внутри, еще до получения оффера? Что, если я скажу: текст вакансии — это честная проекция «внутренней кухни» компании? Я уверена, так как проверила это на личном кейсе, и, вооружившись этим инструментом, проанализировала 146 000 вакансий. О том, почему и как это возможно — для тех, кто не считает неудачное трудоустройство «ценным опытом» — рассказываю ниже.

Читать далее

Эволюция .NET-разработчика: взгляд рынка на грейды и компетенции (анализ 700+ вакансий)

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели13K

Все мы знаем стандартную лестницу: Junior, Middle, Senior. Но где на самом деле проходит граница? Почему в одном стартапе «сеньор» — это тот, кто вчера узнал про LINQ, а в кровавом энтерпрайзе от «мидла» требуют проектировать распределенные системы под нагрузкой в миллион RPS?

Я задалась вопросом оценки собственного грейда, когда уходила со своего первого места работы. Кто я для рынка? Почему мои знания на собесе в одной компании соответствуют чуть ли не уровню Senior, а в другой – покрывают максимум вакансию Junior’a?

На самом деле проблема не нова – каждая компания вынуждена формировать собственную систему грейдов, а вакансии чаще всего содержат требования, собранные по принципу «чем больше, тем лучше». В таких условиях оценить собственный уровень становится задачей со звездочкой.

Я решила отойти от субъективности и спросить у самого рынка. В этой статье — результаты анализа 700+ актуальных вакансий .Net разработчика, графы связности навыков и ответ на вопрос: в какой момент количество выученных библиотек наконец-то превращается в качество инженера.

Читать далее

LLM — это афера на доверии, которая длится 400 лет

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели22K

В 1623 году немец Вильгельм Шиккард создал первые известные чертежи механического калькулятора. Спустя двадцать лет Блез Паскаль разработал машину улучшенной конструкции, чтобы помочь справляться с огромным количеством утомительных арифметических расчётов, необходимых в его работе сборщика налогов.

Интерес к механическим вычислениям не ослабевал последующие века: поколения людей по всему миру продолжали дело Паскаля и Шиккарда, разделяя их убеждение, что перекладывание умственной нагрузки на машину принесёт облегчение.

Аферу на доверии можно разбить на три этапа:

Читать далее

Прививаем машине музыкальный вкус: фильтруем плейлист на основе предпочтений

Уровень сложностиСредний
Время на прочтение10 мин
Охват и читатели6K

Раньше это было способом скоротать время в дороге, но теперь чтобы найти музыкальную "жемчужину" нужно несколько часов сфокусированного прослушивания новинок. Встал выбор: забить или..

Однажды у меня возникла идея, что с моим музыкальным хобби мне могло бы помочь ML. БОльшая часть входящего материала не соответствует моему персональному фильтру. Если убрать ее, то я снова смогу делать подборку в фоне и получать удовольствие

Я не эксперт в ML, но задача вроде бы понятная - готовим датасет, берем модель, обучаем, приключение на 20 минут..

..сейчас, спустя год, когда мой pet-project наконец-то работает. Я смотрю на путь, который привел меня к этому результату. Даже не с точки зрения технологий(про ML лучше писать мастерам игры), а с точки зрения логики решения глазами разработчика. Вот этим я и хочу поделиться

Читать далее

Абсолютные валютные курсы: математика, код и практика

Уровень сложностиСредний
Время на прочтение13 мин
Охват и читатели8.1K

📊 Знаете, что общего у температуры в городах и валютных курсов? И то, и другое — относительные величины. У вас есть разницы, но нет абсолютных значений.

Можно ли из одних лишь парных котировок вроде EUR/USD или USD/JPY вычислить внутреннюю, абсолютную стоимость каждого доллара, евро или йены? Оказывается, можно — и для этого не нужен волшебный экономический калькулятор.

В этой статье мы делаем то, что звучит как задача для детектива: восстанавливаем абсолютные значения из одних лишь отношений. С помощью чистого Python и метода наименьших квадратов мы превращаем сеть из 85 рыночных котировок в единую шкалу стоимости для 45 валют.

Что вас ждёт:

Матрицы, логарифмы и МНК — как линейная алгебра очищает финансовые данные от шума.

Рабочий код — от построения матрицы инцидентности до ежедневного расчёта.

Фокус с разоблачением — на примере USD/JPY покажем, как понять, что на самом деле движет парой: укрепление доллара или ослабление йены?

Масштабирование до 153 валют — как та же математика работает для всей мировой системы.

Если вы когда-либо задумывались, как устроена «кухня» валютного рынка за пределами парных графиков — эта статья для вас. Переходите, чтобы узнать, как превратить относительность в абсолют.

Читать далее
1
23 ...