IHS Automotive предсказывает, что к 2020 порядка 152 миллионов «подключенных» машин будут ежедневно генерировать до 30 терабайт данных. И бизнес, который сумеет грамотно воспользоваться этим богатством, очевидно, окажется «на коне». Поговорим о том, какую информацию можно использовать и что для этого нужно.
Цифровые технологии меняют мир. Предметы перестают быть лишь вещами — они превращаются в информационные, медийные центры, которые имеют выход в интернет, объединяются в сети и обрастают новыми возможностями. В автомобильной отрасли это connected cars.
Успешность работы в этом направлении зависит не столько от характеристик устанавливаемых в машины модулей, сколько от самих сервисов, использующих эти данные, и аналитических моделей, которые обрабатывают и анализируют то, что они получили, делая полезные для бизнеса выводы и прогнозы.
Автомобиль позволяет собирать информацию о его местоположении и мгновенной скорости, а также анализировать данные системы самодиагностики через OBD2. На основе лишь этих сведений с одного авто уже можно сделать вывод, например, о стиле езды водителя или режиме его перемещений (трасса/город).
Анализ таких данных «в массе» еще интереснее. Например, построив карту перемещений автомобилей определенной модели, можно определить целевую аудиторию этой модели и ее «типовые» привычки. Горизонт для применения подобной информации достаточно широк. И бизнес-модели по монетизации собранных неструктурированных данных и сформированных на основе их анализа выводов могут быть самые разнообразные.
Данные о предпочитаемой скорости, периодах и частотности ускорения и торможения позволяют определить стиль езды автовладельца и степень вероятности ДТП. Такой подход дает аккуратным водителям возможность получить скидку, к примеру, на страхование. Подобная система уже используется в ряде стран. Хотя в целом мировой объем страховых премий, рассчитанных при помощи анализа телематических данных, пока невелик.
Аналогичная история с кредитами — если на предыдущем автомобиле человек ездил аккуратно, почему бы не дать ему кредит на новую машину с пониженной ставкой (риски, закладываемые банком в процентную ставку, в данном случае будут чуть ниже).
Анализ телематических данных дает возможность создать своего рода «электронного штурмана», который будет советовать, на какую заправку удобнее заехать, какой маршрут предпочесть для экономии топлива, времени и, в конечном счете, денег. Сервис может и о ТО сообщать заранее, причем не только на основе данных о пробеге, но и по результатам анализа сервисных данных машин той же комплектации у владельцев с похожим режимом эксплуатации.
На основе данных обо всех машинах определенной марки, сошедших с одного конвейера, можно предсказывать оставшееся время полезного использования авто (RUL) и время до поломки (TTF). А при сравнении информации о том, где и как эксплуатировался автомобиль, с данными визуального осмотра, понятны причины некоторых поломок.
Теоретически если водитель из года в год демонстрирует один и тот же стиль вождения, а потом внезапно меняет свои привычки, система может зафиксировать аномалию и просигнализировать об этом.
Причиной аномалии может стать как экстренная ситуация — угон, болезнь — так и вполне обыденная вещь — обучение детей вождению или обновление приложений. Корректный анализ таких аномалий будет возможен только после анализа огромных объемов данных с большого количества авто — поскольку необходимо выявить шаблоны поведения, которые бы однозначно говорили об экстренной ситуации.
Информация о том, где и как эксплуатируется автомобиль, какие сложности при этом возникают и насколько хорошо функционируют те или иные компоненты, интересна и «продавцам». Проанализировав ее, автопроизводители смогут выявить «системные проблемы» серии или модели и исправить их в новых версиях. Дилеры же на основе этих данных смогут планировать закупки запчастей или потенциальный ремонт.
В принципе подобные системы уже используются многими дилерами и тестируются производителями. Последние вряд ли потратят много времени на выстраивание процессов — и, возможно, уже скоро мы увидим подобные решения в коммерческой эксплуатации.
Еще одна сфера применения «больших автомобильных данных» — работа с «постгарантийными» клиентами. Детальная информация о посетителях на авто позволит выявить закономерности в их поведении, что, в свою очередь, даст простор для разработки способов удержать их.
Дополнительная информация об автовладельце и его перемещениях позволяет таргетировать рекламу, нацеленную на водителя и его пассажиров. К примеру, если сбор данных с большого количества автомобилей покажет, что мимо рекламного баннера вдоль дороги проезжают в основном семьи с детьми (а выяснить это можно, зафиксировав регулярную парковку этих же автомобилей около школ и других детских учреждений), это даст козырь в руки рекламному агентству, сдающему его в аренду. Грубо говоря, приемы по таргетированию объявлений, которые давно применяются в сети, станут доступны и вне интернета.
Одновременно появляется возможность применять перекрестный маркетинг. На основе предыдущих интересов клиента, проанализированных сквозь призму информации о его перемещениях и стиле езды, дилеры, владельцы автозаправок и поставщики других услуг смогут сформировать персональный пакет предложений партнерских компаний (магазинов, досуговых центров и т.п.).
Все вышесказанное становится возможным благодаря анализу уже собранных данных. Представьте, какие возможности откроются перед рынком, если автомобиль начнет «общаться» с окружающими объектами (другими автомобилями и элементами дорожной сети), отвечая на их действия или собирая информацию о реакции водителя.
Все написанное выше очень круто в теории, но пока в масштабах всего дорожного движения недоступно на практике. И этому есть простое объяснение.
Для корректного применения больших данных необходимы три компонента: развитая инфраструктура, готовность представителей отрасли к инновациям и ресурсы, в том числе и кадровые, для претворения всех идей в жизнь. Посмотрим, как все обстоит сейчас.
Технически для перехода к идеологии connected cars data все готово. Повсеместно есть мобильная сеть с доступом к интернету. Уже разработаны стандарты обмена данными, которые обеспечивают относительно легкую интеграцию поддерживающих их устройств в инфраструктуру потенциальной системы. Существуют готовые и общепризнанные решения для анализа и хранения больших данных, такие как Hadoop, Spark, Storm и другие, а также крупные облачные сервисы (Amazon RedShift, Azure DataLake, Azure HDInsight).
О готовности к инновациям имеет смысл говорить в двух плоскостях: с точки зрения рынка и со стороны рядовых автомобилистов.
Рынок теоретически готов. Уже более половины продаваемых в мире автомобилей относятся к категории connected. Visiongain считает, что Big Data — один из наиболее быстрорастущих сегментов рынка автомобильной отрасли. Это говорит о большой востребованности анализа больших данных. При этом автопроизводителей, которые пока не проявляют инициативы, подталкивают инвесторы и акционеры.
Тем не менее, активному движению в сторону Big Data пока мешает чисто технический барьер: закрытые протоколы обмена данными внутри машины не позволяют легко и быстро собирать всю информацию с авто всех марок, представленных на рынке. Возможно, ситуацию исправит появление определенного общего стандарта, но пока этот вопрос открыт.
О степени готовности массового пользователя сейчас судить сложно. Как и у любого нововведения, у сервисов на базе анализа Big Data есть свои сторонники и противники. К примеру, любителям агрессивного стиля езды вряд ли понравится пересмотр схемы расчета страховки. На форумах и в блогах сама идея сбора данных с автомобилей вызывает ту же полемику, что и анализ пользовательского поведения устройствами и поисковиком Google: одним по нраву новые функции, а другие протестуют против «тотальной слежки» и рассказывают ужасы о небезопасности накопленных массивов данных. Но маховик запущен.
Внедрение анализа Big Data с нуля подразумевает большие интеллектуальные и финансовые вложения. В одиночку их, естественно, потянут далеко не все, но, как и на других рынках, они вполне могут быть разделены между заинтересованными сторонами. Мы, например, использовали такой подход при создании Remoto: исследования и разработку взяли на себя, а установку оборудования передали автопроизводителям. Так устройство становится дополнительной опцией автомобиля, за счет которой пользователи получают ряд необходимых удобных функций.
С кадрами, способными эффективно работать с Big Data, все несколько сложнее, ведь глобально это новый рынок, к которому еще только предстоит найти «правильный» подход. Мы уже в течение нескольких лет формируем свою команду, делая упор на активных специалистов с творческим подходом к работе, и открыты для новых контактов с заинтересованными в этом направлении людьми.
Прямо сейчас мы ищем:
→ Системного архитектора
→ Системного аналитика
→ Project Manager
Один из примеров сервиса по работе с большими автомобильными данными — платформа Remoto. Она позволяет собирать информацию об автомобиле, управлять частью его функций и связываться с тем самым «мозговым центром» — облаком — для передачи данных. На данный момент Remoto работает с автомобилями Kia, Nissan, Infiniti, Toyota, Genesis, Honda. Технически возможна интеграция и с продукцией других автоконцернов, для расширения списка поддерживаемых моделей необходима небольшая кастомизация софта, подразумевающая взаимодействие с производителем (и его согласие на внедрение подобных технологий).
Решение состоит из нескольких компонентов:
Комплект оборудования в автомобиль — модуль Remoto с SIM-картой — устанавливается непосредственно производителем (как часть штатной комплектации) или дилером (как дополнительная опция). Важно, что при установке не нарушается периметр безопасности машины, т.к. решение может интегрироваться с заводской противоугонной системой.
Задача телематического устройства — прием информации с бортовых систем, передача необработанных данных в облако, прием команд и трансляция их в бортовые системы. Периодичность отправки данных определяется настройками системы. Например, удаленная диагностика проводится два-три раза в месяц.
Мобильное приложение доступно под Android и iOS (в ограниченном режиме — под Windows Phone). С его помощью можно:
Всего более 50 сервисов.
Серверная часть представлена облаком Microsoft Azure и порталами для дилеров, автопроизводителей или страховых компаний — т.е. для основных пользователей собранных о водителях данных. Для интеграции портала с корпоративными системами клиентов предусмотрен API.
На сегодняшний день в мире насчитывается уже более 500 тыс. мобильных пользователей Remoto. Это, в свою очередь, является хорошим заделом для анализа и монетизации Big Data. Уже сейчас компания Bright Box, детищем которой является Remoto, помогает автопроизводителям с бизнес-моделями, вполне доступны разнообразные маркетинговые «фокусы» — карты активности пользователей с определенными авто, уточненные профили покупателей, предпочитающих те или иные авто и т.п.
Таким образом, для Big Data нашлось место даже в консервативной автомобильной отрасли. Доступный уже сегодня инструментарий открыл пути для принципиально нового взаимодействия с клиентом, что позволяет повысить вероятность его возвращения в будущем.
Цифровые технологии меняют мир. Предметы перестают быть лишь вещами — они превращаются в информационные, медийные центры, которые имеют выход в интернет, объединяются в сети и обрастают новыми возможностями. В автомобильной отрасли это connected cars.
Успешность работы в этом направлении зависит не столько от характеристик устанавливаемых в машины модулей, сколько от самих сервисов, использующих эти данные, и аналитических моделей, которые обрабатывают и анализируют то, что они получили, делая полезные для бизнеса выводы и прогнозы.
Возможности Big Data на автомобильном рынке
Автомобиль позволяет собирать информацию о его местоположении и мгновенной скорости, а также анализировать данные системы самодиагностики через OBD2. На основе лишь этих сведений с одного авто уже можно сделать вывод, например, о стиле езды водителя или режиме его перемещений (трасса/город).
Анализ таких данных «в массе» еще интереснее. Например, построив карту перемещений автомобилей определенной модели, можно определить целевую аудиторию этой модели и ее «типовые» привычки. Горизонт для применения подобной информации достаточно широк. И бизнес-модели по монетизации собранных неструктурированных данных и сформированных на основе их анализа выводов могут быть самые разнообразные.
Usage-based страхование и кредитование
Данные о предпочитаемой скорости, периодах и частотности ускорения и торможения позволяют определить стиль езды автовладельца и степень вероятности ДТП. Такой подход дает аккуратным водителям возможность получить скидку, к примеру, на страхование. Подобная система уже используется в ряде стран. Хотя в целом мировой объем страховых премий, рассчитанных при помощи анализа телематических данных, пока невелик.
Аналогичная история с кредитами — если на предыдущем автомобиле человек ездил аккуратно, почему бы не дать ему кредит на новую машину с пониженной ставкой (риски, закладываемые банком в процентную ставку, в данном случае будут чуть ниже).
Информационные сервисы водителя: вождение и обслуживание
Анализ телематических данных дает возможность создать своего рода «электронного штурмана», который будет советовать, на какую заправку удобнее заехать, какой маршрут предпочесть для экономии топлива, времени и, в конечном счете, денег. Сервис может и о ТО сообщать заранее, причем не только на основе данных о пробеге, но и по результатам анализа сервисных данных машин той же комплектации у владельцев с похожим режимом эксплуатации.
На основе данных обо всех машинах определенной марки, сошедших с одного конвейера, можно предсказывать оставшееся время полезного использования авто (RUL) и время до поломки (TTF). А при сравнении информации о том, где и как эксплуатировался автомобиль, с данными визуального осмотра, понятны причины некоторых поломок.
Аномалии поведения и экстренные вызовы
Теоретически если водитель из года в год демонстрирует один и тот же стиль вождения, а потом внезапно меняет свои привычки, система может зафиксировать аномалию и просигнализировать об этом.
Причиной аномалии может стать как экстренная ситуация — угон, болезнь — так и вполне обыденная вещь — обучение детей вождению или обновление приложений. Корректный анализ таких аномалий будет возможен только после анализа огромных объемов данных с большого количества авто — поскольку необходимо выявить шаблоны поведения, которые бы однозначно говорили об экстренной ситуации.
Актуальная статистика автопроизводителю (дилеру)
Информация о том, где и как эксплуатируется автомобиль, какие сложности при этом возникают и насколько хорошо функционируют те или иные компоненты, интересна и «продавцам». Проанализировав ее, автопроизводители смогут выявить «системные проблемы» серии или модели и исправить их в новых версиях. Дилеры же на основе этих данных смогут планировать закупки запчастей или потенциальный ремонт.
В принципе подобные системы уже используются многими дилерами и тестируются производителями. Последние вряд ли потратят много времени на выстраивание процессов — и, возможно, уже скоро мы увидим подобные решения в коммерческой эксплуатации.
Удержание клиентов дилера
Еще одна сфера применения «больших автомобильных данных» — работа с «постгарантийными» клиентами. Детальная информация о посетителях на авто позволит выявить закономерности в их поведении, что, в свою очередь, даст простор для разработки способов удержать их.
Реклама
Дополнительная информация об автовладельце и его перемещениях позволяет таргетировать рекламу, нацеленную на водителя и его пассажиров. К примеру, если сбор данных с большого количества автомобилей покажет, что мимо рекламного баннера вдоль дороги проезжают в основном семьи с детьми (а выяснить это можно, зафиксировав регулярную парковку этих же автомобилей около школ и других детских учреждений), это даст козырь в руки рекламному агентству, сдающему его в аренду. Грубо говоря, приемы по таргетированию объявлений, которые давно применяются в сети, станут доступны и вне интернета.
Одновременно появляется возможность применять перекрестный маркетинг. На основе предыдущих интересов клиента, проанализированных сквозь призму информации о его перемещениях и стиле езды, дилеры, владельцы автозаправок и поставщики других услуг смогут сформировать персональный пакет предложений партнерских компаний (магазинов, досуговых центров и т.п.).
Все вышесказанное становится возможным благодаря анализу уже собранных данных. Представьте, какие возможности откроются перед рынком, если автомобиль начнет «общаться» с окружающими объектами (другими автомобилями и элементами дорожной сети), отвечая на их действия или собирая информацию о реакции водителя.
Идея есть. А как внедрить?
Все написанное выше очень круто в теории, но пока в масштабах всего дорожного движения недоступно на практике. И этому есть простое объяснение.
Для корректного применения больших данных необходимы три компонента: развитая инфраструктура, готовность представителей отрасли к инновациям и ресурсы, в том числе и кадровые, для претворения всех идей в жизнь. Посмотрим, как все обстоит сейчас.
Инфраструктура
Технически для перехода к идеологии connected cars data все готово. Повсеместно есть мобильная сеть с доступом к интернету. Уже разработаны стандарты обмена данными, которые обеспечивают относительно легкую интеграцию поддерживающих их устройств в инфраструктуру потенциальной системы. Существуют готовые и общепризнанные решения для анализа и хранения больших данных, такие как Hadoop, Spark, Storm и другие, а также крупные облачные сервисы (Amazon RedShift, Azure DataLake, Azure HDInsight).
Готовность к инновациям
О готовности к инновациям имеет смысл говорить в двух плоскостях: с точки зрения рынка и со стороны рядовых автомобилистов.
Рынок теоретически готов. Уже более половины продаваемых в мире автомобилей относятся к категории connected. Visiongain считает, что Big Data — один из наиболее быстрорастущих сегментов рынка автомобильной отрасли. Это говорит о большой востребованности анализа больших данных. При этом автопроизводителей, которые пока не проявляют инициативы, подталкивают инвесторы и акционеры.
Тем не менее, активному движению в сторону Big Data пока мешает чисто технический барьер: закрытые протоколы обмена данными внутри машины не позволяют легко и быстро собирать всю информацию с авто всех марок, представленных на рынке. Возможно, ситуацию исправит появление определенного общего стандарта, но пока этот вопрос открыт.
О степени готовности массового пользователя сейчас судить сложно. Как и у любого нововведения, у сервисов на базе анализа Big Data есть свои сторонники и противники. К примеру, любителям агрессивного стиля езды вряд ли понравится пересмотр схемы расчета страховки. На форумах и в блогах сама идея сбора данных с автомобилей вызывает ту же полемику, что и анализ пользовательского поведения устройствами и поисковиком Google: одним по нраву новые функции, а другие протестуют против «тотальной слежки» и рассказывают ужасы о небезопасности накопленных массивов данных. Но маховик запущен.
Ресурсы
Внедрение анализа Big Data с нуля подразумевает большие интеллектуальные и финансовые вложения. В одиночку их, естественно, потянут далеко не все, но, как и на других рынках, они вполне могут быть разделены между заинтересованными сторонами. Мы, например, использовали такой подход при создании Remoto: исследования и разработку взяли на себя, а установку оборудования передали автопроизводителям. Так устройство становится дополнительной опцией автомобиля, за счет которой пользователи получают ряд необходимых удобных функций.
С кадрами, способными эффективно работать с Big Data, все несколько сложнее, ведь глобально это новый рынок, к которому еще только предстоит найти «правильный» подход. Мы уже в течение нескольких лет формируем свою команду, делая упор на активных специалистов с творческим подходом к работе, и открыты для новых контактов с заинтересованными в этом направлении людьми.
Прямо сейчас мы ищем:
→ Системного архитектора
→ Системного аналитика
→ Project Manager
Remoto изнутри
Один из примеров сервиса по работе с большими автомобильными данными — платформа Remoto. Она позволяет собирать информацию об автомобиле, управлять частью его функций и связываться с тем самым «мозговым центром» — облаком — для передачи данных. На данный момент Remoto работает с автомобилями Kia, Nissan, Infiniti, Toyota, Genesis, Honda. Технически возможна интеграция и с продукцией других автоконцернов, для расширения списка поддерживаемых моделей необходима небольшая кастомизация софта, подразумевающая взаимодействие с производителем (и его согласие на внедрение подобных технологий).
Решение состоит из нескольких компонентов:
- оборудование, устанавливаемое в автомобиле;
- мобильное приложение;
- порталы доступа для дилеров и страховых компаний;
- облачная инфраструктура, отвечающая за хранение и анализ данных.
Комплект оборудования в автомобиль — модуль Remoto с SIM-картой — устанавливается непосредственно производителем (как часть штатной комплектации) или дилером (как дополнительная опция). Важно, что при установке не нарушается периметр безопасности машины, т.к. решение может интегрироваться с заводской противоугонной системой.
Задача телематического устройства — прием информации с бортовых систем, передача необработанных данных в облако, прием команд и трансляция их в бортовые системы. Периодичность отправки данных определяется настройками системы. Например, удаленная диагностика проводится два-три раза в месяц.
Мобильное приложение доступно под Android и iOS (в ограниченном режиме — под Windows Phone). С его помощью можно:
- удаленно запустить двигатель;
- настроить охлаждение или обогрев салона по расписанию;
- определить местоположение автомобиля и проследить его маршрут;
- отследить воздействие на автомобиль в отсутствие владельца (удар выше определенного уровня, эвакуация при незапущенном двигателе);
- дистанционно управлять центральным замком (отслеживать статус открытия / закрытия дверей и багажника).
Всего более 50 сервисов.
Серверная часть представлена облаком Microsoft Azure и порталами для дилеров, автопроизводителей или страховых компаний — т.е. для основных пользователей собранных о водителях данных. Для интеграции портала с корпоративными системами клиентов предусмотрен API.
На сегодняшний день в мире насчитывается уже более 500 тыс. мобильных пользователей Remoto. Это, в свою очередь, является хорошим заделом для анализа и монетизации Big Data. Уже сейчас компания Bright Box, детищем которой является Remoto, помогает автопроизводителям с бизнес-моделями, вполне доступны разнообразные маркетинговые «фокусы» — карты активности пользователей с определенными авто, уточненные профили покупателей, предпочитающих те или иные авто и т.п.
Таким образом, для Big Data нашлось место даже в консервативной автомобильной отрасли. Доступный уже сегодня инструментарий открыл пути для принципиально нового взаимодействия с клиентом, что позволяет повысить вероятность его возвращения в будущем.