Комментарии 266
Сам я, наблюдая за муравьями (могу видео поделиться), видел, что поднимают они соломинки размером примерно с себя, то есть и весом где-то такие же.
Но, как сказано, если есть работы, было бы интересно их изучить.
У детского автомобиля еще и плотность ниже, и больше периметр на единицу веса, он вряд ли в свободном падении разгонится выше 50 км/ч, человек кстати стабилизируется на 200 км/ч в падении.
Чем меньше предмет, тем больше периметр, площадь, на единицу массы и медленней свободное падение из-за трения, это в дополнение к прочности.
так это закон квадрата-куба
Долговременно он тоже прекрасно все выдерживает. Объяснение простое — мощность мышц это квадратичная функция к линейным размерам (зависит от площади сечения), а вес — кубическая функция (зависит от объема). Точные значения там чуток другие, т.е. чуть меньше двойки и чуть меньше тройки. Но физический смысл остается тем же — при уменьшении линейных размеров относительная тяговооруженность мышц растет.
PS Прочитал дальше, ниже в каментах то же самое пишут.
Кстати, не все эти транспортные средства тащат на себе свой источник энергии. По сути, это делает лишь ракета и атомный морской контейнеровоз. В некоторой мере, электротранспорт (он не возит с собой электростанцию, но и ракета не возит нефтеперерабатывающий завод).
Это как раз самые далекие друг от друга категории.
Причем даже с учетом того, что ракеты вы судя по всему считали «сухими» — без запаса топлива, без которого они вообще ничего поднимать не смогут.
Иначе разница больше 2х порядков получилась бы.

Зависимость Q от скорости по группам. Хорошо видно следующее:
1. Есть слабая зависимость от логарифма скорости.
2. Она статистически слаба (R2 = 0.47)
3.… и основывается, по сути, лишь на трёх группах. Из которых только одна (ракеты) представлена более чем одной точкой. Что, возможно, корректнее объясняется как «ракеты — особый случай», а не «общая зависимость».

Зависимость Q от скорости по группам. Хорошо видно следующее:
1. Есть слабая зависимость от логарифма скорости. Как я и говорил.
2. Она статистически слаба (R2 = 0.47)
3.… и основывается, по сути, лишь на трёх группах. Из которых только одна (ракеты) представлена более чем одной точкой. Что, возможно, корректнее объясняется как «ракеты — особый случай», а не «общая зависимость».
Вопрос закрыт.
Грубо говоря, усилие, развиваемое мышцами, прямо пропорционально поперечной площади сечения этих самых мышц (квадратичная зависимость от размеров). А масса груза, при прочих равных, зависит от линейного размера кубически.
Так что при уменьшении линейных размеров живого существа по всем измерениям (допустим, в 10 раз) получаем, что масса падает быстрее (1000 раз), нежели спадает усилие развиваемое мышцами (100 раз).
Отсюда и бешеная, по меркам среднего человека, относительная грузоподъемность насекомых.
И в зоологии (например, для млекопитающих — замедление метаболизма и уменьшение потребления пищи с ростом размеров), и в технике — прочность сечения как квадратичная функция размеров vs масса как кубическая.
слоны меньше слоних
Больше. В полтора-два раза по массе.
НУ и судя по видео (это эпично, да) основной вес слона приходится на задние лапы, а не на слониху.
Но все равно динозавры испытывали трудности из-за размеров своего тела.
Сейчас люди тоже иногда испытывают, но мы стремимся к бодипозитиву!
Когда реагировали на любую проблему повышением рождаемости в типичной семье был десяток голодных детей, из которых большая часть дохла не дожив до совершеннолетия, а более половины взрослых дохло не дожив до старости в результате очередной войны (и даже, не в качестве солдат, а в процессе грабежа учинённого бандами мародёров).
Если мир стал хуже чем был, то многие люди отказываются от детей, мол зачем их мучать.
Но там говорится что люди отказываются от детей именно из-за того что мир стал лучше.
Прогнозы там тоже есть и повышенная рождаемость в них как раз противоречит позитивным тенденциям.
Профессор Дэннис Медоуз и демограф Анатолий Вишневский (2004 г.) считают, что при достижении численности населения в 10-11 млрд наиболее вероятен резкий спад уровня жизни человечества, глобальный голод и социальные катаклизмы, в результате истощения невозобновляемых ресурсов, деградации сельхозугодий и биоресурсов морей и океанов, с последующим обвальным падением численности населения Земли до 2-3 млрд человек к 2100 году[19].
Если мир стал хуже чем был, то многие люди отказываются от детей, мол зачем их мучать.
Я это писал в контексте реакции на негативные факторы. Например в Украине в 2014 когда началась война, я слышал частые изречения «куда рожать, ужас же!».
Кому поможет увеличение рождаемости во время резкого спада уровня жизни человечества, глобального голода и социальных катаклизмом вызванных перенаселением?
А в натуральном хозяйстве романтика есть, когда есть доступ к территории, на которой ещё возможно это хозяйство. Думаю фраза «деградации сельхозугодий» не просто так там написана.
https://en.wikipedia.org/wiki/Square%E2%80%93cube_law (Закон квадрата — куба,… first described in 1638 by Galileo Galilei in his Two New Sciences as the "...ratio of two volumes is greater than the ratio of their surfaces")
Тем не менее фактор масштаба присутствует. Все дело в метаболизме. Чем меньше организм, тем выше метаболизм. В том числе мощность на единицу мышечной массы. Самое простое объяснение, что теплообмен с окружающей средой пропорционален поверхности. А тепловыделение — массе. Поэтому для поддержания постоянной температуры (для теплокровных) — метаболизм должен быть обратно пропорционален линейным размерам. От масштаба зависит и опорно двигательный аппарат. Для небольших размеров нет никаких ограничений, чтобы обеспечивать большую удельную можность. Для больших размеров он банально не сможет выдержать нагрузок, котрые в состоянии создать мышцы. Или если все таки сможет, то это должна быть сложная и дорогая конструкция. Вот тут как раз прочность костей определяется их сечением, а нагрузки всей мышечной массой.
А тепловыделение — массе
Вроде проблем с перегревом нет особых. Самые крупные животные как-раз в Африке живут. На севере средних размеров, хотя на севере большие размеры выгоднее для сохранения тепла.
По моим наблюдениям, в холодных водах даже крупные животные много ресурсов тратят на сохранение тепла, шерсть, толстый слой жира. Даже в теплом климате у большинства животных достаточно теплая шерсть. Что свидетельствует о проблеме переохлаждения, а не перегрева.
Перегрев, вероятно, был бы актуален животным на порядок больших размеров, чем существующие, весом в 500 тонн и более. Но нужно моделировать.
Даже у кита весом в 100 тонн, есть защита от переохлаждения, ну и запас на случай голода
Вес шкуры с подкожным жиром у него достигает 27 % веса тела
Электросамокат?
Логично как то увязать не только отношение транспортного средства к массе груза, но и время с расстоянием (иначе, как считать к примеру конвейерную ленту и трубопровод, железную дорогу).
Я думаю логично взять не весь океан, а воду, которая обеспечивает плавучесть.— интересная идея! Ведь масса этой воды равна массе корабля. И Q у контейнеровозов тогда получится не 2-3, а 1-1.5, т.е. ещё ближе к единице. Интересно…
Ведь масса этой воды равна массе корабля.
Архимед только что в ванной поскользнулся. Термин «водоизмещение» прошёл мимо?
Кстати, в тему про воду — как насчёт буксиров и несамоходных барж?
Или пары мелких буксирчиков, толкающих огромный сухогруз?
Или тягач везущий на себе груз (максимально облегчённый, потому что использует вес перевозимого).
Вот корабль с грузом массы m. На него сверху вниз действует сила тяжести mg. Снизу вверх на него действует сила Архимеда F. Поскольку корабль не улетает ни вверх, ни вниз, mg = F. Далее, чему равна F? F = ρgV, где V — объём погружённой под воду части. Поскольку вода (в первом приближении) несжимаема, этот объём, втиснутый в воду, и есть объем воды, которая вытеснилась (предполагая сосуд изначально полным). Сокращая g, получаем m = ρV. Правая часть есть масса вытесненной воды. Она равна, как видим, массе корабля. ЧТД.
Буксиры и баржи — надо посчитать. Баржа ведь тоже что-то весит. Q, наверное, получится побольше единички, но вряд ли уж за десятку.
Мало того, если не путаю, у них есть заполняемые водой отсеки, почти как у подводной лодки, чтобы осадку дать для устойчивости (кажется остойчивость называется) пустого кораблика и при погрузке они постепенно «продуваются», вроде.
В общем, как это вижу я, простая физика подаётся, как некое «открытие». Хотя такое я уже не первый раз наблюдаю — что я сам ребёнком читал в журнале ЮТ в 80-ых годах, сегодня подаётся как открытие года (это не к вам, а вообще). И это не абстрактный пример, именно такое вот «переоткрытие» информации из статьей ЮТ я сам, прямо здесь, видел минимум 5 раз и даже хотел написать об этом… но не с моими писательскими способностями. :(
Другими словам, «средняя плотность» корабля меньше плотности воды. Именно по этому он и не тонет.
, у нормальных же кораблей есть подводная и надводная части, которая, вместе с большой частью груза, если говорить о сухогрузах — над водой и она не вытесняет «объём» воды равный по массе… и далее по тексту Архимеда
Вы, наверное, удивитесь, но это не имеет значения. Что подводная, что надводная часть корабля вытесняют объем воды равный по массе… и далее по тексту Архимеда.
То есть, корабль (его подводную часть), по определению, приходится делать более «водоизмещающим», там же нужна не нулевая плавучесть
Нет, конечно. При недогрузе судно "всплывает" и вытесняет меньший объём воды. "чудесным" образом в точности равный его текущей массе.
Мало того, если не путаю, у них есть заполняемые водой отсеки, почти как у подводной лодки, чтобы осадку дать для устойчивости (кажется остойчивость называется) пустого кораблика и при погрузке они постепенно «продуваются», вроде
Возможно, у каких-то судов такое есть, но, как правило, нет. В любом случае это не имеет значения в контексте обсуждаемой проблемы.
что я сам ребёнком читал в журнале ЮТ в 80-ых годах, сегодня подаётся как открытие года
Да, да. Старая байка о том, что японцы якобы сделали квадриллион бабла, патентуя заметки из ют и науки и жизни.
Вы, наверное, удивитесь, но это не имеет значения. Что подводная, что надводная часть корабля вытесняют объем воды равный по массе… и далее по тексту Архимеда.
Вы удивитесь, но вы не читали комментируемый коментарий, ладно, согласен пойти на уступку — читали невнимательно.
Надводная часть ничего не вытесняет, потому что… она надводная! Удивительно, не так ли? И поэтому за неё приходится отдуваться подводной :D
При недогрузе судно «всплывает» и вытесняет меньший объём воды.
И снова вы подтверждаете, что читали невнимательно. Весь корабль — весит больше, чем только подводная часть, а надводная не вытесняет ничего, по причине названной уже три раза и поэтому подводную часть приходится делать большего объёма.
В любом случае это не имеет значения в контексте обсуждаемой проблемы.
Он перевернётся и утонет и никуда больше не поплывёт — очень даже имеет :P.
Да, да. Старая байка о том, что японцы якобы сделали квадриллион бабла, патентуя заметки из ют и науки и жизни.
Заметьте, про японцев не я заговорил. Вообще-то я говорил, что прямо здесь, на этом сайте такое появлялось и это были не только переводы.
Я думаю логично взять не весь океан, а воду, которая обеспечивает плавучесть.
Если представить себе корабль в очень тесном облегающем шлюзе, то воды там вообще капля. Считай ноль массы.
Так что не очень понятно, сколько же воды «обеспечивает плавучесть», и весь наш спор, пожалуй, бессмысленен.
По водному транспорту вообще интересно. Берем вырожденный, но реальный случай — плот из стволов деревьев, сплавляемый по реке. Масса «груза» — сотни тонн, «сухая масса» — около нуля (плотовщики с шестами, но даже если добавим двигатели для маневров, Q все равно заоблачный будет.)
А там я доберусь до дома, возьму два пластиковых стаканчика разных размеров, пластилин и воспроизведу опыт вживую ;)
вес – это сила, с которой тело притягивается к Земле
А вот верная формулировка.
Вес — сила, с которой тело действует на опору (или подвес, или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести.
Даже не знаю стоит ли дальше читать после этого… Буду ждать вашего воспроизведения опыта
Итого, нашел два стаканчика и воду. Как видно на первом фото — стаканчик с гирькой 100 гр. и магнитными шариками весом 50 гр. плавает (именно плавает, можно утопить и глубже, или покрутить) в другом стакане, в котором содержится 64 гр. воды. Фото на весах тоже есть, но тут и на глаз видно вес объектов.


Если в вашем шлюзе-презервативе воды меньше чем масса корабля — то корабль просто сядет на дно, а вода будет стоять где-то там вверху.
Ну, вы, блин, даёте! Нет, конечно. Архимедова сила не зависит от фактического объёма воды, а только от объёма погружёного тела. Архимедова формулировка просто численно приравнивает этот объём к объёму фактически вытесненной воды. Попробуйте вывести архимедову силу, интегрируя гидростатическое давление по поверхности погружённого тела. Для простоты представьте кубик, погружённый в жидкость так, чтобы одна (обе-две) грани были горизонтальными. Вы же не будете спорить, что архимедова сила будет равна интегралу по поверхности нижней грани от давления (боковые силы давления будут скомпенсированы)? А этот интеграл численно равен площади грани, умноженной на глубину погружения грани и умноженной на плотность воды (следует из определения поверхностного интеграла и закона Паскаля). И ни какой объём воды тут не будет фигурировать вообще. Так понятнее? Поэтому корабль в доке-презервативе таки будет плавать (если, конечно, обеспечить какое-то пространство для воды по всей погружаемой поверхности).
Насчёт кастрюль, не знаю уж что вы с ними такого проделывали, а я такое делал неоднократно, собирая из подручных средств водяную баню. Всё прекрасно работает, как и полагается по законам физики.
С плотами опять-же ни какого читерства не вижу. Плот он же груз, он же корабль. Он сам себя везет за счет внешних сил. Q равен 1 если нет плотовщика, и чуть менее 1 если есть. И то только благодаря наличию течения реки. Без течения будет Q=0. В данном случае течение реки это внешний источник энергии. И я считаю автору не стоило включать такие устройства в анализ. Например у конвейерной ленты так-же источник энергии не учтен и как результат не адекватное Q.
В данном случае течение реки это внешний источник энергии. И я считаю автору не стоило включать такие устройства в анализ.
По-видимому, я как-то криво сформулировал свою мысль, ибо имел в виду ровно то же самое %)
А вот насчет потенциальной энергии, честно говоря, не понял. Иванов же не роняет груз на матушку-Землю, а тот не падает на нее. Орбита, невесомость, груз летит-плывет из т.И на расстоянии N от Земли в т.П на том же расстоянии N (для простоты) от Земли.
Да и странно как-то, что наши рассуждения начинают зависеть от происхождения груза.
Я по ленте вообще не согласен. Лента сама себя не питает, и лента сама себя не движет. Отсюда и дополнительная масса, которую она может перевезти.
— Пожалуй. Но лента там — одна точка, картину в целом не делает.
Логично как то увязать не только отношение транспортного средства к массе груза, но и время с расстоянием
— Увяжите. С интересом гляну на результат.
Updated
С другой стороны, вес человека как управляющего элемента грузовика почти не сказывается на его массе. А если взять большой электросамокат, весом 30кг и способный везти двоих, то есть 75+75кг, получаем Q=1.4 — бинго! Сова снова на глобусе.
Если только Вы не имели в виду какой-нибудь самоуправляемый самокат, я почему и задал уточняющий вопрос.
Получатся вот такие «электросамокаты»:
www.youtube.com/watch?v=H5pChlqcm40
Интересно, какое у них Q.
25 кг самокат способен везти и быстро и долго :) Там необходимого железа килограмм на 12, остальное можно занять батарейкой.
В пользу этого предположения говорит, что вы пытаетесь добавить к массе поезда рельсы, к контейнеровозу воду, а к самокату вес водителя. Это все очень явные манипуляции, поставьте четкое определение, что такое «полезная нагрузка» и что «сухая масса» (почему кстати сухая, без топлива ничто не поедет).
К контейнеровозу воду в расчётах я не добавляю. Это кого-то из комментаторов идея.
Без топлива ничто не едет, но уже с 10% топлива едет всё. А вот без человека самокат вообще не поедет. Никуда. Как и телега без лошади. И 10% человека в систему не посадишь.
За исключением ракет, масса топлива, даже если её включить в картину, выводов радикально не меняет.
Топливо структурной нагрузки (почти) не несёт.
Картина вообще чрезвычайно устойчива к упомянутым Вами неоднозначностям. Я, скажем, долго думал, включать ли массу рельсов. Решил — так точнее. Но можно и наоборот. От этого мало что меняется. Точек-то сотни. Я для чего и выложил данные. Чтобы, если кто сомневается или хочет посчитать лучше, могли бы. Пусть люди пробуют, проверяют. Но мне думается, основные выводы останутся те же.
Справедливо, что масса ПН конкретной ракеты зависит от конечной скорости. Но ведь конкретная ракета (космическая ли, баллистическая или там противотанковая) уже конструируется под фиксированную конечную скорость. Никому не нужен «космический» носитель, поднимающий 50% своего веса — но только до ближайшего океана. И все хотят, чтобы эта ПН была не слишком мала. Так скорость и пропадает из картины.
Не очень понял комментарий про нагрузку единицы техники vs тягу двигателя, не поясните?
А самокат везёт человека.
Без топлива ничто не едет, но уже с 10% топлива едет всё. А вот без человека самокат вообще не поедет. Никуда. Как и телега без лошади. И 10% человека в систему не посадишь.
Человек, в общем-то, там только равновесие держит. Думаю, в 7кг(10% от человека) уложится масса гироскопа, который будучи раскрученным, будет так же держать равновесие. Тем более, активно его держать надо только на старте.
Без топлива ничто не едет, но уже с 10% топлива едет всё.
Нет.
Машина с 10% топлива перевезет груз на 10% расстояния. Ракета с 10% топлива поднимется километров на двадцать и шлепется неподалеку от места старта.Атомоход с 10% стержней в реакторе вообще из порта не выйдет, думаю. Конвейерная лента… а что вообще для неё топливо? Как и для электровоза, кстати.
Поэтому топливо учитывать надо, без него никак. Более того, оно ещё и разную относительную массу имеет — на порядок. В машине это 2-5% от полной массы (т.е. от того, что мы имеем на старте), у ракеты — примерно 90%. Или даже так — в машине это 10% от массы груза, в ракете — 1000%.
А потом ещё и скорость/расстояние учесть…
Вот грузовик полностью заправлен. Он тащит 5 тонн груза. Его конструкция воспринимает определённую нагрузку. Он долго ехал в свой пункт Б и под конец в баке осталось 10% топлива. Но он по-прежнему тащит 5 тонн груза, нагрузка на конструкцию осталась одна и та же. Инженерная сложность, потребная на создание этой конструкции, не зависит от того, сколько топлива осталась в баке. А мы интересуемся измерить именно как стоимость конструкции зависит от этой инженерной сложности, задаваемой массой. Топливо в этой картине ни при чём абсолютно.
Равно как и с ракетой. Перед отключением первой ступени в баках топлива вообще 3% может быть. Но конструкция работает так же, и сложность её от выгорания топлива не меняется.
Если Вы начнёте считать с топливом, вы смешаете две очень разные вещи: цену разработки прочного корпуса, и (почти нулевую) стоимость топлива, нагрузки не несущего.
С ракетой ситуация иная: ни с каким уровнем топлива, кроме как со 100%(опустим пока запас) она спутник на орбиту не доставит — или упадет, недолетев, или выйдет на нерасчетную орбиту. Соответственно, грузовик, заправленный на старте 10% топлива, функционировать может, так как именно с таким обьемом топлива его работа становится, в некотором роде, самоподдерживающейся — заправиться, чтобы доехать до следующей заправки, где заправиться, чтобы… и так далее. Ракету надо обязательно заправлять на 100%.
Соответственно, именно с таким количеством топлива надо считать массу для вычисления Q — некий процент заполненности бака(исходя из среднего расстояния между заправками и потребления топлива) для машины, и полная масса топлива для ракеты.
Ракета с 10% топлива поднимется километров на двадцать и шлепется неподалеку от места старта
С ракетой всё сложнее. Топливо и есть основной её вес. При стартовой массе в 10% она стартанет с ускорением в 10G или выше (вместо запланированных 1.4) и быстро наберет большую скорость. Там нелинейная зависимость. Топливо не только перемещает ракету, но и является балластом. Остаток топлива самое ценное.
А если загрузить топливом на 200%, то может висеть с нулевым ускорением, пока не сожжет излишек топлива, не позволяющее оторваться от Земли ))
Тогда почему рассуждения в статье идут про первую ступень без топлива? Давайте на примере Falcon 9 FT (расчеты грубые, но чтобы показать идею сойдет)
Стартовая масса: 549 т.
Полезная нагрузка (НОО): 22.8 т. (Q = 0.0415)
Полезная нагрузка (ГПО): 5.3 т. (Q = 0.009)
Марс: 4 т. (Q = 0.07)
Из этого видно, что для ракет вес полезной нагрузки зависит от того куда конкретно нужно ее забросить. С одной стороны найденная вами линейная зависимость массы техники от массы полезной нагрузки ожидаема, но с другой вольность трактовок позволяет делать громкие заявления, что они 1:1.
И еще важный момент — грузоподъемность это важная величина для грузоперевозок, но зачем тогда сюда пытаться притянуть легковой и спортивный транспорт у которого полезная нагрузка может быть далеко не первым параметром оптимизации.
Особенно умилила экстраполяция графиков (где точки разбросаны плюс-минус лапоть) и ведро допущений из пальца.
Ловкость рук — и никакого мошенства (tm).
Я так тоже умею:
* температура по больнице в среднем — 36.6
* вероятность встретить динозавра на улице — 50%
Ну и т.д.

alex-anpilogov.livejournal.com/72668.html
Результаты точно также лежат на одной прямой в логарифмических координатах.
Потому что более мощный транспорт обычно едет быстрее, иначе зачем его делать мощным.
Сопротивление среды в общем случае зависит от квадрата скорости, то квадрат скорости примерно пропорционален тяговооруженности, то есть P/(mgv^2) ~= const, что показывает этот график.
На самом деле, бурный прогресс пароходов, который дал нам "Титаник", опирался на масштабный эффект: сопротивление и потребная мощность двигателя растет скорее с квадратом линейного размера, а полная масса и запас топлива с кубом, то есть в 64 раза более тяжелый пароход при прочих равных сможет уплыть вчетверо дальше, но на этой диаграмме будет вчетверо хуже из-за низкой тяговооруженности.

«Конечно машины мало напоминают организмы, в основном по тому, что они не обладают свойством роста и самовосстановления. Но все же они периодически восстанавливаются во время техобслуживания и ремонтов, хотя и с помощью людей. И еще, машины можно по аналогии с животными классифицировать, разделяя на семейства. К примеру, если упрощенно, гоночные болиды, легковые и грузовые авто, с соотв. параметрами средних мощностей, масс и времени эксплуатации. Можно также ввести аналог инт. метаболизма, если отнести мощность к массе. Макс. время эксплуатации не найти, потому взяты некоторые предельные по нормативам из сети. Для болидов срок не нашел, но двигатели F1 расчитаны на ~2000 км пробега. Посему сред. срок эксплуатации можно определить в несколько лет, для определенности возьмем 3. Получается такая «удельная инт. метаболизма» и «МПЖ» для машин: для болидов ~ 700/1000 = 0.7 и 3 года, для лег. машин ~ 150/1500 = 0.1 и 12 лет, для грузовых ~ 400/6000 = 0.07 и 20 лет. Если построить график, то он тоже будет аппроксимироваться степенной зависимостью, особенно, если брать множество конкретных марок машин. Какие семейства млекопитающих условно могут соответствовать этим авто-семействам? Гоночным болидам — землеройковые, чемпионы по инт. метаболизма среди млекопитающих, и имеющих самую короткую МПЖ (на графике представитель семейства — Белобрюхая белозубка). Легковым авто — к примеру, семейство землекоповых (на графике — Дамарский пескорой), а грузовым — медвежьи (на графике — Медведь губач).»
Конечно, как и у каждого отдельного человека, или особей др. видов со своей индивидуальной историей жизни, у каждой машины своя индивидуальная история эксплуатации. Но тепловыделение связанное с расходом энергии для выполнения функций является одним из основных факторов их повреждения и износа, и влияет на время «жизни», как биологических организмов, так и машин, и связано с физическими ограничениями.
Ограничения на тип транспортного средства: нужно указать требования, что и как оценивать, в каких условиях. Например, шагающий экскаватор (1000 тонн) тоже служит для перемещения груза в ковше/дреглайне (30 тонн) с существенно низким Q. С другой стороны, канатом (масса 50 кг) можно тянуть на тележке массу в десятки тонн. Целлофановая плёнка (масса менее 1 кг), надутая воздухом, перемещала нескольких ребятишек (совокупная масса около 100 кг) на практически любое расстояние вниз по течению реки. Целлофановая плёнка (масса менее 1 кг) перемещает нескольких взрослых (совокупная масса более 200 кг) вниз со снежного склона.
Ограничения на условия эксперимента: трудно сравнить «мягкое с тёплым». Для каждого технического средства есть наиболее выгодные условия применения. Пытаться вывести «среднее по больнице» приведёт к погрешностям измерений, либо к намеренному ограничению выборки (чтобы она соответствовала условиям).
Путаница с тем, что включать или не включать в состав ТС: В каких-то случаях топливо играет неотъемлемую часть ТС. В каких-то случаях водитель или лошадь является неотъемлемой частью… Как понять, когда это происходит? Может быть поставить условие, например транспортное средство должно переместить груз в своей привычной среде (дороги, воздух, космос, вода) при наличии благоприятных условий (штиль, попутный ветер, идеальное дорожное покрытие) на определённое расстояние (N километров, M корпусов транспортного средства), за время, не превышающее X единиц, при условии нулевой начальной скорости.
Для отрицательных Q вы привели в пример якоря, фундаменты, тормоза. Мне кажется, что это не транспортные средства. Но вот плуги, культиваторы, бороны, а так же их землескребущие собратья грейдеры, скрейперы и бульдозеры сюда подойдут лучше.

Сразу видно что если заменить сталь/чугун на что-то очень легкое, то можно существенно уменшить этот вес. Но при этом новый материал должен соответствовать инженерным, технологическим и экономическим требованиям.
У автомобиля из-за различных передаточных чисел коробки передач будет разное Q. Причем на низших может тягать кого-то еще, а на высших и себя сдвинуть с места не сможет. Но начав с грузом движение с низшей передачи, разгоняясь по хорошей дороге, переключаясь на высшие, может очень быстро ехать, расходуя меньше топлива, чем на старте. Силы инерции и накат на хорошей дороге тут в помощь. Как тут Q считать?
Разумеется, опытный водитель (равно как, кстати, и правильное распределение груза) этот справочный предел превысить может. Но… опытный водитель дополнительных денег стоит ))
Причем на низших может тягать кого-то еще
Да, потому что Q примерно около 1, грузовик массой 10 тонн может тягать груз 10 тонн или другой грузовик массой 10 тонн. Противоречия нет.
электромоторы тянут на одной передаточной скорости нормально.
Нет, там стоит хитромудрый контроллер, который раздает токи-напряжения-частоты в зависимости от оборотов.
Есть универсальное правило, следующее из законов сохранения энергии и импульса. Для линейного движения (ракет) оно звучит как P = T * u, где P — полезная мощность двигателя, T — тяга, u — скорость истечения (газа из сопла). Для кругового вращения (двигатели наземных транспортных средств) там вместо T и u будет крутящий момент и скорость вращения вала. Коробка передач при помощи шестерней позволяет уменьшить скорость вращения, но получить момент при той же мощности. Частотный контроллер электродвигателя делает то же самое, но еще на этапе подачи энергии в обмотки.
хитромудрый контроллер
В коллекторном моторе обычном нет хитрого контроллера. Мотор «сам» берет нужный ток по мере возникновения препятствий вращению. Прекрасная нагрузочная характеристика, очень подходящая для транспорта. Ниже скорость, выше момент и ток потребляемый.
Да и не влияет это на Q значительно. Подразумевается крейсеркая скорость, а как она реализована уже не важно, электромотор или ДВС с коробкой передач. При разумном соотношении цена/качество приходим к Q примерно равным 1. Другие соотношения возможны, но менее практичны, есть побочные эффекты.
Кремниевые чипы сверху ограничены температурой порядка 130 Цельсия и в ближайшее время венероходов нам не видать…
С другой стороны, сверхпроводящий магнит требует очень сильного холода (единицы К). Автомобильный мотор желательно разогреть до 95 градусов Цельсия. Термоядерный реактор требует 150 миллионов градусов Цельсия…
техника делается под температуру окружающей среды, человек эволюционировал под температуру окружающей среды, т.е. есть внешний фактор, под который мы подстроились в обоих случаях.
Если вы проектируете автомобиль — то он будет рассчитан на эксплуатацию в температуру, нормальную для региона эксплуатации. Например, в машинах для Саудовской Аравии не будет печки (но будет мощный кондиционер), а в машине для России будет и печка, и аккумулятор увеличенной емкости, и обогрев зеркал-стекол-сидений, а для некоторых регионов ещё и Вебасто опцией сделают.
Авиадвигателю «комфортнее» в -50 по Цельсию, например. Но приходится делать самолёт таким, чтобы он мог взлетать в +30.
habr.com/ru/post/190180
Разгон Arduino. Под жидким азотом. 20 ⇒ 65.3Mhz @ -196 °C
И наоборот, для скважин есть высокотемпературная электроника, работающая при температуре до +200. Всё работает, это не критический режим, просто ухудшаются параметры электроники, высокие токи утечки, заниженное быстродействие, сложности с отводом тепла.
Для механизмов другая тема. Они разрабатываются при человеческих температурах. Карбон, например. Прекрасный материал, но в космосе он становится хрупким при низких температурах и плавится при высоких. Хотя материал лучше стали во многом. Многочисленные органические материалы, пластмассы, пленки, электролиты, тоже оптимизированы для комнатных температур.
Возможно для температур -50… -80 (случайный диапазон температур) будет группа материалов лучше на порядок известных пластмасс, просто их не открыли еще. Или открыли, но не востребованы, так как при -40 они уже плавятся, а при -90 становятся хрупкими, т.е. далеко за человеческими пределами функционирования.
Интересно что обычные стали тоже становятся хрупкими при низких температурах, кроме специальных легированных. Казалось бы это металл, чем холоднее, тем должно быть лучше. А нет, большинство сталей наиболее упругие и прочные при комнатной температуре. При высоких уже окисляются и становятся ковики, при низких хрупкие.
Техника для экстремальной среды тоже существует. Выбор материалов ограничивается при этом. Телегу можно и из дерева, а вот поршня в мотор уже надо из металла.
Если у вас -1 разрешенная, то у вас будет большое число переходов -1 до +1, что приводит к появлению и исчезновению льда-воды.
А лед-вода такая штука, что малейшая трещинка на плате становится дыркой(поскольку лед занимает больше обьема). Тоесть плата должна быть герметична и выпукла.
Обычно просто пишут, без образования конденсата влажность допускается. И еще одно требование, когда заносят оборудование с улицы в помещение, нужно подождать пока испарится возможный конденсат. На холодных предметах в теплом помещении может образоваться влага.
И наоборот, при типичной влажности менее 20% влаги или инея не будет ни при 0, ни при -1.
Уличные часы, телефоны, автомобили и много чего еще многократно переживает охлаждение ниже 0 градусов, естественно в сухом виде.
Скорее всего именно 0 градусов пишут просто подразумевая обычный режим температур, комнатный. Что ниже, считается чуть ли не криотемпературами, уличным/промышленным/военным/космическим исполнением и требует отдельного дорогостоящего тестирования. Смотрю по микроконтроллерам, сердце электроники
ELECTRICAL CHARACTERISTICS FOR PIC16F83 AND PIC16F84
Absolute Maximum Ratings
Ambient temperature under bias -55°C to +125°C (работа)
Storage temperature -65°C to +150°C (хранение)
— На линейку PIC16F87X так же
Для PIC16F627 -40 +125°C
У микрочипа
Для микроконтроллеров с коммерческим температурным диапазоном (0 СТа+70 С).
Для микроконтроллеров с промышленным температурным диапазоном (-40 СТд+85 С).
Для микроконтроллеров с расширенным температурным диапазоном (-40 СТд+125 С).
A автомобильное исполнение (от -40 до +125 градусов)
C коммерческое исполнение (от 0 до 70 градусов)
I индустриальное исполнение (от -40 до +85 градусов)
M военное исполнение (от -55 до +125 градусов)
Причем в военном исполнении 2 проблемы, очень дорого и не продадут. Хотя на севере это обычные температуры уличные.
А защита от образования льда и деструкции — сильно сложнее.
Конденсация-вода-лед
9-5=4г воды. 4/6=700мг на квадратный метр, или 0.7мг на квадратный сантиметр. Не думаю, что такое количество воды в виде инея может что-то повредить на плате, покрытой лаком.
Но дело даже не в этом. Следуя вашей логике, получается, что самое страшное — это переход нуля. А это не так: не зря есть разные градации нижней температуры, -10, -40, -55.
Только оно может осесть не в виде инея, а обычно в виде капелек, которые имеют тенденцию затекать в щели.
А -40 — это уже прочность материалов, да, другая градация. Некоторые пластмасы и смолы, да тот же лак, становятся неустойчивыми и/или хрупкими. Да и припои некоторые — тоже.
Но мы в этой ветке вроде бы обсуждаем, почему «наугад» пишут «от 0».
Для электромотороллера Q ~ 1, а вот для самоката порядка 4-5 (мой самокат весит 14 кг, я вешу 59 в голом виде, типичная масса нагрузки ближе к 70 кг).
Но человек на самокате — это очень хорошая нагрузка, сама держится и активно стремится не упасть.
Самое главное что в этом случае — человек представляет собой еще и двигатель и запас топлива такого транспортного средства. Т.е. является его частью, а не только грузом.
Аналогично для обычных велосипедов.
Другое дело, что устройство класса самокатов-электровелосипедов — это только функция движения. Устройства типа мотоциклов добавляют функцию амортизации. Полноценные ТС также имеют систему защиты пассажира/груза (корпус, окна, система вентиляции), из-за чего сравнивать Q самоката и нормальных ТС некорректно.
Точно так же в элекросамокате по множеству причин ограничена мощность и пробег по сравнению со, скажем, мотоциклом.
Резюмируя — для узких задач можно создать весьма эффективные ТС (и люди это делают), но чем дальше (запас хода), чем сложнее условия передвижения (городская дорога — любая дорога — бездорожье — вода — воздух — космос) — тем хуже соотношение масс.
В плане грузоподъёмности для каждого из условий есть свой оптимум (например, в городских условиях оптимальны вроде бы грузовики на 7-12т, на трассе — автобус из нескольких 40-футовиков и т.п.), отклонение от которого в любую сторону снижает эффективность
Коэффициент Q, в принципе, можно привязать к КПД транспорта. Кроме того, т.к. в вес транспорта входит и масса перевозимого топлива, то для некот. видов транспорта (особенно с очень высоким Q) в принципе можно сказать, что Q (или КПД) будет увеличиваться по мере расхода топлива.
А плот — интересный вопрос. Плоты в природе ведь естественным путём иногда образуются. Это транспортное средство не совсем сделано человеком )
так что самокат, чемодан на колесиках и карьерный самосвал в данном контексте похожи (и, конечно, чем размеры рамы меньше, тем удельная грузородъемность больше — из тех же соображений, как про муравья выше).
Лыжи, ледянка, плот или наливной танкер принципиально другие, потому что опираются на большую площадь и не имеют несущей конструкции, способной длительно выдерживать перевозимый вес.
Трубопроводы, кстати, тоже транспорт; как для них посчитать Q
Можно рассматривать трубопровод как цистерну длиной в одну секцию между соседними насосами. Тогда Q = масса материала, находящегося в секции, делённая на массу труб, опор и насосной станции этой секции.
Не совсем понятно также, почему для Протона Q считается как соотношение сухой массы к полной массе, а на ранее приведенных графиках, насколько я понял вы брали отношение сухой массы к массе груза(или полезной нагрузки) (или не так?)
Опять же, если сравнивать с автомобилями, массу топлива и прочих жидкостей учитываем или нет?
При вычислении Q нас в первую очередь интересует инжереная сложность противостоящей нагрузке конструкции (топливо ей не противостоит и ничего почти не стоит). Какой нагрузке противостоит первая ступень? Свой стартовый вес, вес топлива, и вес всего, что сверху, всё это с учётом перегрузки. Делим это на сухую массу ступени (именно она всё это держит). И делим на g (исключительно чтобы оперировать безразмерным параметром).
Первые же взятые наугад несколько ссылок в гугле опровергают основной постулат данной статьи: www.google.com/search?q=вес+и+грузоподъемность
Например, calcsoft.ru/skolko-vesit-kamaz — несколько таблиц как раз на заданную тему показывают, что отношение массы автомобилей КамАЗ к их грузоподъемности составляет величину около 2.0
отношение массы автомобилей КамАЗ к их грузоподъемности составляет величину около 2.0
2.0 — это отношение полной массы к грузоподъёмности. А полная масса — это масса с грузом.
Возьмем первую же строку. КамАЗ 4308.
В вашей табличке «масса со снаряжением» 11500 кг, грузоподъёмность — 5500 кг. Сайт КамАЗа нам говорит:
Грузоподъемность автомобиля, кг 5730
Снаряженная масса, кг 6020
Почти совпадает.
К примеру, взять самосвал КамАЗ 65115 — указано «снаряженная масса» 25 тонн, грузоподъемность 15.
При этом КамАЗ-6522 (тоже самосвал) если верить википедии:
Снаряженная масса а/м, кг — 13950
Грузоподъемность а/м, кг — 13500
т.е. 1 к 1.
Да и описание в шапке странное:
Первая цифра обозначает полный вес. Цифра 6 указывает на то, что грузоподъемность КАМАЗа составляет от 20 до 40 тонн. Индекс 5 относит автомобиль к классу самосвалов.
Т.е. сначала «полный вес», потом «грузоподъемность» и аж 20-40 тонн, что нереально.
На деле это полная масса, как указано изначально.
В общем, пмсм, намешано в кучу.
Грустно как то (
В целом же — было бы интересно взглянуть на данные.
У дирижабля груз размещён снаружи. Покажите мне, как воздух облегчает структурную нагрузку на корпус в этом случае (и делает его легче)?
Теперь дирижабль. На нижнюю часть его корпуса диаметром 10 метров действует разница давлений столба гелия и воздуха высотой 50 метров. Это 0.1% атмосферы, или 10 кг на квадратный метр. В 1000 раз меньше. Что не особо позволяет снизить требования на прочность корпуса и облегчить его.
Для простоты — мысленный эксперимент. Представим себе танкер, перевозящий… воду. Он сидит себе в воде. Изнутри наружу давит вода. Снаружи внутрь — вода. Они компенсируются. Прочность корпуса (и массу) за счёт этого можно радикально уменьшить. В разы.
А вот с сухопутным грузовиком такой номер не пройдёт. Кузову приходится полностью держать груз. Срезать разы по массе за счёт асфальта не получается.
грузовых судов (корабль может быть только военным)Или парусным.
Впрочем, всё равно не грузовым — если говорить о современности. Вот только — а почему нужно придерживаться такого ограничения? Так-то, например, клиперы были вполне грузовиками.
Напомню:
есть огромная разница в перемещении грузов по горизонтали, где мы сопротивляемся трению и лобовому сопротивлению воздуха, пропорционального квадрату скорости, и по «вертикали» где нам необходимо побороть тоже самое трение воздуха (переменное по высоте), лобовое сопротивление (переменное по высоте) + гравитацию. Авто конечно тоже может двигаться с уклоном, но вот водные виды транспорта движутся строго горизонтально без преодоления уклонов
Полагаю правильно было бы выполнить расчеты для каждой категории транспорта по отдельности, а перемещаемую расчетную грузоединицу представить как совершаемую работу. Согласитесь, тащить груз в гору с уклоном 30 град. совсем не то же самое что тащить под уклон, и уж тем более это никак не сравнить с ракетой выводящей груз на орбиту высотой 400 км. Для морского и речного транспорта необходимо еще учитывать течение и вообще кучу всего, например учесть массу топлива, для ракет это суперкритично

Грузовой самолёт с «сухим» весом почти в 300 тонн лично мне неизвестен.
Самый крупный из летающих, Ан-225 — Q=250\250=1, с оговорками
A380F, существует в линейке, но ни одного не заказано — Q=150\274=0,54
В районе 180 тонн точечка почему-то одна.
Ан-124 — Q=120\178,4=0,67
С-5 Galaxy — Q=130\172,3=0,75
747 Dreamlifter — Q=113,4\180,53=0,63
747-8F — Q=134,2\191,1=0,70
В районе 120 тонн:
Ан-22 — Q=60\118,72=0,51
C-17 Globemaster III — Q=77,5\122,01=0,64
Более лёгкие проверять не стал, поскольку их реально дофига.
В остальном не разбираюсь.
кузов приделайте, кондиционируемый кузов с джакузи, проходимость по буреломам, разгон до 60 за 3сек…
и, внезапно, вместо соотношения груз/девайс порядка 10, мы получим 0,1.
И как мы видим, почему-то бизнес не ставит джакузи в грузовички, но ставит бензобаки, двигатели, подушки и радиоприемники.
«потому, что могут» — читай «экономически целесообразно».
а вот джакузи — уже нет.
так же не имеет смысла и «тележку увеличить примерно до размеров кузова грузовичка»
Я не знаю, может кто-то и придлывал «мотор. бензобак или аккумулятор. Ну и место для водителя». Но как-то по ссылке не видел таких тележек.
Мой капитанский посыл в том, что payload ratio легко может отличаться на порядок-два и все зависит от конкретыных критериев оптимизации — скорость, надежность, проходимость, цена.
трековый велосипед PR ~10
вездеход по тундре PR ~ 0.2
очень много зависит от нормативных требований — танкер с pr=10 если не больше — не самая сложная задача — удерживать и так плавучие нефтепродукты от расплвывания по поверхности, но нормы требуют двойные стенки, на случай аварий и пр и вот в два раза pr уменьшили. Хотите идти, а не в Гольфстреме дрейфовать — необходимая мощность пропорциональна квадрату желаемой скорости — выбирайте.
Как видно, Q хоть и не везде строго единично, но в рамках каждой группы тяготеет к общему значению, близкому к единице.
Смотрю на таблицу и пытаюсь понять: как именно 2.5 и 3.5 тяготеют к единице?
Имеется в виду, что крайне близко к 1 по отношению к возможным значениям(+бесконечности).
Вот у нас есть транспортные средства с массами от 100 до 107 килограмм. И есть грузоподъёмности примерно в том же диапазоне. Предположим, что эти величины полностью друг от друга независимы. Тогда, если мы начнём вычислять величину Q, то где-то 300 кг поделятся на 900 тонн, а где-то 2000 тонн на 5 тонн (поскольку связи нет, пары значений для каждого средства случайны). В итоге значения Q будут разбросаны от 10-5 до 105. Это и есть ожидаемый диапазон разброса для «нулевой гипотезы» об отсутствии связи между массой и грузоподъёмностью. С ним надо сравнивать, когда мы выясняем, тяготеет ли Q к чему-то.
Реальный разброс — от 0.3 до 3.5. То есть, в 100 тысяч раз меньше теоретически возможного. На этом фоне отклонение от единицы в 2-3 раза, очевидно, настолько ничтожно, что «нулевую гипотезу» приходится с треском отбросить.
Можно сделать транспортные средства для перевозки одного атома, там «теоретический» разброс ещё больше будет. После этого и порядок 5 будет «почти единицей» по сравнению с -25.
Вот распределение F = dN/dLog10(m) логарифмов масс ТС в данной работе:

(Логарифм десятичный, масса в килограммах)
Вот, аналогично, распределение G = dN/dLog10(Load) логарифмов нагрузок:

Их характерная полуширина — 3-4 порядка. Характерная, т.е. не зависящая от наличия единичных машин для перевозки атомов, и даже от включения/исключения класса электрокаров, на котором часть народа выше так сфокусировалась ))
Логарифм Q есть логарифм отношения L/m, то есть разница логарифмов масс и грузоподъёмностей. Характерная полуширина этой разницы — вообще порядков 10.
Вопрос. Дано два независимых распределения F(x) и G(y). Какова будет функция распределения величины x — y? Ответ: это свёртка функций F(x) и G(-y).
Т.е., распределение логарифма Q — это свёртка распределений логарифма масс F и
минус-логарифма грузоподъёмности G. Если, конечно, между первым и вторым нет связи.
Какова характерная полуширина этой свёртки? Можно, конечно, посчитать точно, но для не слишком экзотических распределений она — примерно половина ширины распределения F(m) — G(m). Т.е., примерно 5 порядков. Опять же, характерная, т.е. не зависящая от единичных примеров/выпадов. Важно также помнить, что операция свёртки вообще имеет тенденцию «замыливать и обезличивать» входные функции, устраняя особенности вроде сильных пиков или далёких выбросов.
Итак, если m и L(oad) никак не связаны, следует ожидать, что распределение величины Log(Q) будет чем-то колоколоподобным с полушириной около 5 порядков.
Мы наблюдаем нечто колоколоподобное, но с полушириной в 0.5 порядка.
Какова вероятность, что подобная «узкая» выборка образовалась случайно в то время как мы ожидаем «широкую»? Считаем хи-статистику, смотрим по таблицам вероятность, что результат — случайность. Я этого не делал, но поверьте, в данном случае она астрономически мала.
И будет мала, пока наблюдаемая характерная полуширина логарифма Q не достигнет хотя бы половины полуширины каждого из распределений, т.е. эдак 1.5-2 порядков. Можно посчитать точно, при необходимости. Но при такой колоссальной разнице ожидаемого «независимого» и реально наблюдаемого распределения в этом нет нужды, статистика заменяется здравым смыслом.
15 точек (столько же, сколько у нас классов). У точек логарифм грузоподъёмности линейно зависит от логарифма массы. Но — добавлен разный уровень шума s. От s = ±0.5 порядка и выше. Это в точности эквивалентно разбросу Q в 10s раз.
Проведём через каждую группу линию и посчитаем, какова же вероятность того, что данные точки сложились в эту линию (или, возможно, лучшую) при разных уровнях разброса Q.
±0.5 порядка (т.е. полуширина отклонения от единицы до 3-х раз::

Вероятность, что это случайность — 1.9*10-11
±2 порядка (т.е. полуширина отклонения от единицы до 100 раз):

Вероятность, что это случайность — 1.3*10-5. Уже можно задуматься.
±7 порядков:

Полный шум (p = 0.47)
Т.е. видно, что отклонения Q от единицы раз эдак до тридцати даже выводов не ломают.
1 "Газель" с сверхпроводящим магнитом (4 тесла) на 1 тонну для перевозки 1 млрд антипротонов — на несколько сотен метров по маршруту ELENA — ISOLDE. Проект PUMA (antiProton Unstable Matter Annihilation)
https://home.cern/news/news/physics/making-antimatter-transportable
https://home.cern/news/news/physics/puma-project-antimatter-goes-nomad
https://indico.cern.ch/event/736662/contributions/3038841/attachments/1676018/2690828/PUMA__INTC_Jun18.pdf (фото автомобиля на стр 5)
Почему все транспортные средства тяготеют к грузоподьемности равной своему весу легко прийти из простых рассуждений: Если есть ТС способное везти в 10 раз больше собственного веса — тогда чтобы увеличить грузоподьемность на 5% надо уменьшить сухую массу в 2 раза. А если ТС можетвезет 1/10 собственного веса — тогда уменьшив сухую массу всего на 10% получаем прирост грузоподьемности в 2 раза.
При таком раскладе делать ТС с массовым совершенством сильно больше единицы выгодно только если это очень дешево получается.
Аналогично для первой ступени ракеты делать ее массовое совершенство выше примерно 15 (как у современных ракет) не целесообразно так как экономия массы на фоне массы полезной нагрузки (в виде заправленной второй ступени) незначительна. Если только вы не собираетесь уменьшать количество ступеней или сажать ступень на своих движках.
И в статье совсем не ракрыта тема стоимости топлива. Для самолетов, слышал мнение, что стоимость топлива дает основной вклад в стоимость перевозки грузов а не стоимость самолета.
И вот еще. Какое тут Q будет?
Тягач примерно 7 тонн и полуприцеп 8. Автор их сознательно исключил ибо они не попадают в теорию однако ирл перевозят грузов почти как железная дорога с рельсами. Ограничение на перевозку в ~24 тонн только в законе — зависит от прочности дорожного полотна.
Автор их сознательно исключил ибо они не попадают в теорию
Трудности с делением 24 на 15? Q = 1.6 получится. Где непопадание?
Сравните это с диапазоном 10-5....105, который бы наблюдался, если бы массы и грузоподъёмности действительно абсолютно не зависели друг от друга (диапазон и тех, и других — от 102 до 107 килограмм).
Там, в общем-то, можно обойтись без тягача, просто лебедка, которая тянет сантиметры в минуту, но с большим усилием. Пары тонн хватит.
Пожалуй дом в неск тысяч тонн двигать будут по рельсам при помощи гидравлических домкратов.
Спасибо!
В статью действительно закралась одна серьёзная неточность. Неочевидная. Её заметили несколько человек. Но благодарен я больше всего пользователю didkovskyi.
Он не стал размахивать совой на глобусе, обвинять меня в намеренной подгонке данных, и пытаться перечислить все шершавости текста (а куда же без них?). Он сфокусировался на главном, задав один-единственный простой вопрос:
Не совсем понял, почему массу топлива в ракете отнесли к полезной нагрузке.
И вот тут я, попытавшись сформулировать ответ, разглядел, наконец, эту неоднозначность в незамутнённом виде.
Есть два разных Q. И они очень похожи.
Первое, Q1, характеризует экономическую эффективность системы. Оно равно массе груза к сухой массе ТС. Без топлива. Почему без? Потому что именно в таком рассмотрении вырисовывается сильная закономерность Q = 1. Со страшной силой. Вероятность случайного совпадения — на уровне 10-300. Можно выкинуть конвейерную ленту, подозрительные электрокары, ракеты и ещё половину точек — всё равно p-value остаётся астрономически ничтожным. Спрашивать, почему мы смотрим именно без топлива — это все равно что требовать у Ома, чтобы он не ток от напряжения мерял, а что-то другое. Именно там возникает закономерность. Видимо, «так устроена природа». Впрочем, очень хорошее, на мой взгляд, объяснение феномену предложил santa324.
И есть другое Q, назовем его Q2. Оно характеризует способность системы выдерживать механическую нагрузку. Равно весу груза плюс топлива, деленным на mg, где m — маса сухой конструкции.
Для подавляющего большинства транспортных средств Q1 ≈ Q2 ≈ 1. Именно это сходство не позволило ни мне, ни десятку человек, которых я просил вычитать и «разбомбить» статью перед публикацией, заметить неоднозначность. И потребовались тысячи читателей Хабра, чтобы обратить на неё внимание.
Существенная разница возникает именно у ракет. Из-за массы топлива. Так, у первой ступени Протона Q1 — это масса всех заправленных вышестоящих ступеней плюс ПН, к сухой массе ступени. Где-то 7.7. А вот Q2 действительно зашкаливает за 34.
И здесь встаёт вопрос: так к какому же Q применимы полученные формулы стоимости?
Я утверждаю, что к Q2. Именно им определяется способность системы держать нагрузки, а значит, и инженерная сложность.
Простой мысленный эксперимент. Вот Вы — конструктор первой ступени Протона. Есть два варианта нагрузки, на которую её нужно рассчитывать:
а) Q1, нагрузка 240 тонн (только верхние ступени).
б) Q2, нагрузка 1068 тонн (вес верхних ступеней и топлива, да с учётом перегрузки)
Очевидно, что если выбрать Q1, то ракета не то что никуда не улетит, а просто порвётся на этапе заправки топливом. Значит, конструировать её надо под значительно большую нагрузку Q2. С соответствующими инженерными трудностями и более высокой стоимостью.
Сумируем:
1. Q1 характеризует экономическую эффективность транспортного средства, Q2 — инженерную стоимость.
2. Для большинства человеческих ТС Q1 ≈ Q2 ≈ 1.
3. Однако у ракет Q1 ≈ 1, Q2 — несколько десятков.
3. У первых ступеней ракет Q1 ≈ 3-10, Q2 — несколько десятков. Последним и определяется (в значительной степени) их высокая стоимость.
Это, надеюсь, разрешает противоречие по ракетам, на которое с разной степенью отчётливости пытались указать умные люди.
Без топлива. Почему без? Потому что именно в таком рассмотрении вырисовывается сильная закономерность Q = 1
Подгонка результата под ожидание, разве нет?
Ладно, давайте серьёзно. Вы путаете подгонку описания под данные и подгонку данных под описание. Первое, в общем — наука. Второе… не будем о грустном.
Опасная это путаница, будьте осторожнее. Я без иронии.
Как известно экстраординарные утверждения требуют экстраординарных доказательств. Мне кажется как простое эмпирическое правило для быстрой оценки вполне имеет право на существование, а вот на закон не тянет.
Например, я взял самые большие самосвалы (получилось далеко от единицы):
ru.wikipedia.org/wiki/Liebherr_T282B (Q = 1.4)
ru.wikipedia.org/wiki/БелАЗ-75710 (Q = 1.25)
А в случае разных видов техники начинает топливо и среда оказывать влияние. Как идея для повышения предсказательной силы можно попробовать усовершенствовать формулу как-то так:
(полезная нагрузка) / (сухая масса + масса топлива) ≈ 1 ± 0.3
Наверное, стоило это как-то яснее выразить в статье, а то народ действительно ожидал единицу плюс-минус проценты.
С другой стороны если вы хотите брать только двигатель и шасси без топлива — то нужно и везде так делать. И везде топливо записывать в полезную нагрузку. Заодно уйдем от запаса хода, который у всех разный.
Оно равно массе груза к сухой массе ТС. Без топлива. Почему без? Потому что именно в таком рассмотрении вырисовывается сильная закономерность Q = 1.
Для подавляющего большинства транспортных средств Q1 ≈ Q2 ≈ 1.
Тогда ещё более непонятно это обоснование выбора Q1 вместо Q2, т.к. из цитаты выше следует, что ровно такая же закономерность наблюдается и для Q2.
Но если масса топлива существенна (как у ракет), то эти параметры расходятся. И инженерную сложность (равно как и стоимость) тогда оценивает Q2.
Без топлива. Почему без? Потому что именно в таком рассмотрении вырисовывается сильная закономерность Q = 1.… Можно выкинуть конвейерную ленту, подозрительные электрокары, ракеты и ещё половину точек ...
и
Для подавляющего большинства транспортных средств Q1 ≈ Q2 ≈ 1.
В первом вы говорите, что выбрали Q1 потому, что в таком случае получается закономерность Q = 1. Во втором — что для большинства Q1 почти равно Q2, т.е. получается что для демонстрации закономерности не важно, какое из них брать.
Очевидно, что если выбрать Q1, то ракета не то что никуда не улетит, а просто порвётся на этапе заправки топливомТам еще хитрее. Во многих ракетах бак является несущим элементом. Пустая первая ступень не выдержит вес заправленной второй, но если первую ступень заправить (или израсходовать топливо и наддуть газом наддува), то это давление позволит этот вес выдержать
PS: выходит, Гигантские Боевые Человекоподобные Роботы нереальны при имеющихся материалах?
Типичный ОБЧР — вполне укладывается в прочность стали (он ростом — ниже стальной Эйфелевой башни), просто его грунт не удержит, и он в него будет проваливаться в него «по колено», как человек в рыхлый снег, при каждом шаге.
выходит, Гигантские Боевые Человекоподобные Роботы нереальны при имеющихся материалах?
Ну, если посмотреть на Big Muskie, то кажется, что реальны :)
Думаю, корреляция с себестоимостью оказалась бы еще более точной.
Теперь рассмотрим грузовик с мощностью мотора P, собственной массой m и полезным грузом M. Если пренебречь сопротивлением воздуха, а учитывать только трение в шинах, то можно считать, что скорость V пропорциональна P/(m + M). Тогда кинетическая энергия груза равна MP^2(m + M)^2/2. Если мы хотим максимизировать эту энергию, то должны выбрать M = m, то есть, Q = 1.
Непонятно, зачем максимизировать кинетическую энергию груза (какой-то смысл был бы максимизировать величину MV), но вот такой курьёзный факт имеет место. :-)
Конечно, потери есть не только в шинах, и вообще, разные виды транспорта имеют разный КПД.
А при очень маленьких или очень больших R мощность, отдаваемая в нагрузку R, будет около нуля.
Извините, пожалуйста, если я зря влез в обсуждение, обнаружив забавный факт. Просто, мне стало любопытно, а какая именно функция максимизируется при Q = 1. Оказалось, что кинетическая энергия груза.
Контрпример
для тренда грузоподъемности транспортных средств:
эклектические моноколеса (EUC) имеют параметр грузоподъемности 2 < Q < 7.
Цивилизация Пружин, 1/5