Оптимизация нейросетевой платформы Caffe для архитектуры Intel
22 мин
Перевод
Современные программы, претендующие на звание эффективных, должны учитывать особенности аппаратного обеспечения, на котором они будут исполняться. В частности, речь идёт о многоядерных процессорах, например, таких, как Intel Xeon и Intel Xeon Phi, о больших размерах кэш-памяти, о наборах инструкций, скажем, Intel AVX2 и Intel AVX-512, позволяющих повысить производительность вычислений.

Еле удержались, чтобы не пошутить про руссиано)
Вот, например, Caffe – популярная платформа для разработки нейронных сетей глубокого обучения. Её создали в Berkley Vision and Learning Center (BVLC), она пришлась по душе сообществу независимых разработчиков, которые вносят посильный вклад в её развитие. Платформа живёт и развивается, доказательство тому – статистика на странице проекта в GitHub. Caffe называют «быстрой открытой платформой для глубокого обучения». Можно ли ускорить такой вот «быстрый» набор инструментов? Задавшись этим вопросом, мы решили оптимизировать Caffe для архитектуры Intel.

Еле удержались, чтобы не пошутить про руссиано)
Вот, например, Caffe – популярная платформа для разработки нейронных сетей глубокого обучения. Её создали в Berkley Vision and Learning Center (BVLC), она пришлась по душе сообществу независимых разработчиков, которые вносят посильный вклад в её развитие. Платформа живёт и развивается, доказательство тому – статистика на странице проекта в GitHub. Caffe называют «быстрой открытой платформой для глубокого обучения». Можно ли ускорить такой вот «быстрый» набор инструментов? Задавшись этим вопросом, мы решили оптимизировать Caffe для архитектуры Intel.

















