Комментарии 24
О. всегда были интересны подобные системы и футбольная статистика. Клево что появилось ещё одно решение. Пара вопросов:
"Кроме этого, снимается биометрия каждого игрока" - а согласие получаете? :D
Этот матч анализировали? Как справились?
Ещё кажется Ростов играл в снегу с ЦСКА, но там вроде уже мяч нашли оранжевый и форма не была белой). Но по нему тоже интересно, т.к. по описанию его вы точно должны были анализировать.
Какие технические параметры можете раскрыть? СУБД/Расчет статистики/Объем данных за матч(видео/обработанные данные)
Что включаете в аналитику? Тепловые карты, касания мяча, фитнес вижу. Анализ передач, показатели прессинга, xG? По вратарям какую статистику даёте?
Этот матч анализировали? Как справились?
по этому матчу мы считали только фитнес (дистанция/скорость). Номера были различимы, поэтому все прошло успешно) Но в целом есть сложные матчи, где из-за снега/ветра невозможно различить игрока на поле. В таких условиях могут быть проблемы. Но пока такие матчи скорее исключение, чем правило
Какие технические параметры можете раскрыть? СУБД/Расчет статистики/Объем данных за матч(видео/обработанные данные)
на базу сейчас супер нагрузки нет, используем Postgresql. Каждый матч – это порядка 500Gb видео
Что включаете в аналитику? Тепловые карты, касания мяча, фитнес вижу. Анализ передач, показатели прессинга, xG? По вратарям какую статистику даёте?
сейчас автоматически считаем дистанцию/скорость, строим тепловые карты передвижений, количество рывков, время в разных скоростных режимах. В ближайших планах добавить автоматический расчет статистики по передачам/голевым моментам/единоборствам/навесам/etc. По вратарям сейчас ту же, что и для других игроков, но работаем надо добавлением параметров
Спасибо!
А спрос на доп. статистику "по передачам/голевым моментам/единоборствам/навесам/etc" от клубов есть? А то у нас ряд тренеров это всё фигнёй считают))
И болельщицкий вопрос: Спартак пользуется вашими услугами?)) Я так понимаю, по крайней мере на стадион пускает.
Спасибо за статью. Круто, что у нас появляются аналоги сбора данных из матчей типа statsbomb, wyscout. Надеюсь проект получит нужный отклик и получится, что-то типа сотрудничества Amazon и NFL или Бундеслиги.
Есть ли в планах делится частью данных, statbombs на гит выкладывал старые event данные? Планируется реализация метрик менее популярных на тв, но более показательные и трудных, типа Expected Possession Value? Так же планируется инфографика в трансляции Кинопоиска?
Статья - наглядный ответ на вопрос почему "Cделайте мне аналитику футбола за 10-20-50K USD не получится".
а как после кучи-малы вы используете биометрич. данные, чтобы потом понять кто есть кто?
А какой стек технологий для этого использовали? Планируется ли выпуск-продажа вашего фреймворка для кастомных приложений?
А нельзя каждому трекер прицепить или сверху съёмку вести?
В 2006м году мы когда играли в пейнтболл, мы собирали GPS тракеры и вешали их на капитанов команд, с выводом данных на гугл-мэпс.
А для различных чекпоинтов и флагов мы вырвали старые системы слежения из грузовиков, и прикрутили флаги к этиим системам. Когда кто-то захватывал базу и поднимал флаг, автоматически подсчитывались очки.
Дело было сделано на коленке, и всё отлично считалось. Почти что 20 лет назад.
Мне думается, что маленький брелок в повязке или в носке будет более удобным, чем пытаться покупать такую оптику и тренировать матмодель.
такие решения с GPS есть, про них упоминалось мельком в статье. Но GPS в условиях стадионов работает плохо, погрешность может доходить до десятков метров. Мы решили пойти по пути работы с видео, т.к. это более универсально и позволяет получить больше данных + можно сопоставить каждый элемент статистики с моментом на видео, для дальнейшего анализа тренером и командой.
вести съемку сверху в теории можно, но сложнее/дороже технически + требует своего решения под архитектуру каждого стадиона. Текущий сетап с 4 камерами позволяет получить очень широкий угол обзора по каждому игроку и пока устраивает нас
Как мы оцифровали футбольные матчи с помощью CV
При чем тут резюме (curriculum vitae), как с помощью него что-то можно оцифровывать, почему все вдруг стали использовать аббревиатуры без расшифровки...
Раньше на первом курсе перед написанием первого реферата объясняли, как работать с аббревиатурами. Теперь это сакральное знание утеряно?
Это кросс-валидация, резюме тут ни при чем. Имея одну кросс-валидацию можно оцифровать все, кроме самой кросс-валидации. Имея две кросс-валидации, можно оцифровать вообще все, что угодно.
CV - Computer Vision - именно то, что обсуждалось в статье
Достаточно популярная аббревиатура для технологического ресурса, коим [за]является хабр :)
Спасибо
Привет, да, про стек было бы очень интересно узнать, + еще бы информации про альтернативы/конкурентные решения - какие есть на рынке в РФ, ну и как это работает у западных коллег
Хорошая статья, занимался похожей задачей пару лет назад, в нее в том числе входила оценка расстояния от камеры до человека.
Как вы рассчитываете расстояние, которое пробежал игрок? Это не совсем линейная функция и она зависит от фокального расстояния линзы, расстояния от камеры до объекта, угла обзора. Я использовал для этого проективное преобразование, но также в него нужно было заложить расстояние из реальной жизни, поэтому для каждой камеры приходилось калибровать алгоритм перед работой на месте, ходя перед ней с дальномером.
К тому же для определения местоположения человека на картинке я использовал нижнюю границу bbox-а человека, а bbox штука не всегда точная, особенно если игрок на поле в дальнем, относительно камеры, углу поля. Как с этим боретесь?
Также вопрос по монтажу камер: как вы находите место для расположения камер с фиксированным фокусом на стадионе? Я предполагаю (сам на стадионах не был), что место с заданным расстоянием от поля до камеры не на каждом стадионе найдется, поэтому качество картинки для вашего пайплайна может варьироваться от стадиона к стадиону.
Я, кстати, решал проблему с искажением картинки из-за широкоугольного объектива программным удалением дисторсии, что, правда, ухудшает качество картинки и накладывает небольшую дополнительную нагрузку на сервер. Зато можно использовать более дешевые камеры! У некоторых моделей hikvision неплохое качество картинки для многих CV задач, но почти на всех присутствует дисторсия.
Классная статья!
Скажите, вы нанимаете сейчас продактов/аналитиков? Работал в Яндексе + стартапил лет 7 назад в этом направлении, правда для настольного тенниса и любительского сегмента. Хочется помочь сделать CV аналитику реальностью!
маловато деталей именно алгоритма..
была статья о том, что распознавание движения в CV - сложнейшая задача, которая часто упирается в те же перекрытия -- как вы это решали? как конкретно дообучение тут помогает?
Как мы оцифровали футбольные матчи с помощью CV