Обновить
227.91

Физика

Наука об окружающем нас мире

Сначала показывать
Порог рейтинга
Уровень сложности

Кот, который не умирал

Уровень сложностиПростой
Время на прочтение12 мин
Охват и читатели8.5K

В 1935 году австрийский физик Эрвин Шрёдингер опубликовал довольно критический трёхчастный обзор того, что он назвал «текущей ситуацией» в относительно новой теории квантовой механики. В основном обзор Шрёдингера, написанный на немецком языке, является сухим и техническим и не представляет интереса для кого-либо за пределами узкого академического мира квантовой физики. Но в одном коротком абзаце, написанном с явной иронией, он дал волю фантазии, которая 90 лет спустя продолжает находить отклик в популярной культуре. Этот абзац касался кота Шрёдингера, ставшего позже знаменитым. Как малоизвестный спор о математически сложной и довольно непонятной теории физики стал частью общественного сознания в рамках исследования человеческой психики? В этой статье мы об этом расскажем.

Читать далее

Новости

Теория групп для всех: пульт для управления реальностью прямо из палаты

Уровень сложностиСредний
Время на прочтение13 мин
Охват и читатели7.9K

Почему теория групп порой кажется сложной и непонятной. Представьте себе, что вы открываете учебник по математике. На первой же странице видите: «Гру́ппа — множество, на котором определена ассоциативная бинарная операция, причём »

В этот момент у вас сразу же появляются вопросы:

Откуда взялось это множество и зачем оно нужно?

Какая операция и что это вообще всё значит?

Почему я должен верить в эти аксиомы?

Большинство курсов по теории групп построены по принципу «сначала формализм, потом (может быть) понимание». Студентов заставляют зубрить символьные доказательства «от противного», которые безупречны логически, но ничего не дают интуиции

В этой статье мы перевернем всё с ног на голову.

Читать далее

Спросите Итана: Сможем ли мы когда-нибудь наблюдать распад протона?

Уровень сложностиСложный
Время на прочтение13 мин
Охват и читатели8.4K

Вселенная наполнена всяким разным, куда бы мы ни заглянули. Несмотря на то, что большая часть Вселенной является «тёмной» в том смысле, что мы ещё не выяснили, как её непосредственно обнаружить — 95 % плотности космической энергии состоит из тёмной энергии и тёмной материи — оставшиеся 5 %, которые представлены различными формами материи и излучения, имеют огромное значение. Из них состоим мы, планеты, звезды и галактики, а также звёздный свет, плазма и облака нейтрального газа, обнаруженные внутри и за пределами галактик, и всё остальное, что мы можем наблюдать. Из этих 5 %, с точки зрения массы, более трёх четвертей находится в форме протонов: простейших и самых лёгких барионов во всей Вселенной; частиц, состоящих из трёх кварков.

Насколько мы можем судить, протон является стабильной частицей. Экспериментально мы установили нижний предел его жизни в 1034 года: это примерно в септиллион раз больше, чем нынешний возраст Вселенной. И всё же вопрос о том, распадается ли протон, и если да, то какова его продолжительность жизни, находится в центре одной из величайших загадок всей теоретической физики. Как мы работаем над поиском ответа и что именно поставлено на карту? Именно это хочет узнать читатель, задавая вопрос:

«Как... мы когда-нибудь сможем узнать, распадаются ли протоны? Какая технология нам нужна, чтобы это обнаружить? Можем ли мы заставить это произойти?»

Это сложный и глубокий вопрос, но его важность не всегда очевидна. Давайте разберёмся, почему вопрос о стабильности протона так важен, а затем вернёмся к нашим лучшим нынешним и будущим попыткам найти ответ.

Читать далее

Как летает космическая ракета (на примере РН Союз)? Отвечаем методом структурного моделирования

Уровень сложностиПростой
Время на прочтение17 мин
Охват и читатели18K

В предыдущей части мы запустили двухступенчатую ракет в космос. Вторая ступень достигла космической скорости по формуле Циолковского и согласно законам Ньютона. Это, конечно, хорошо и правильно, но не совсем. Точнее не совсем правильно. В наших расчетах мы запускали ракету в белый свет, как в копеечку, вертикально вверх. В этом случае первая ступень улетает в открытый космос по инерции и летит, черт знает куда (а черт – потому что бога нет, Гагарин, когда летал, не видел). 

Реальные ракеты выходят на орбиту по-другому, не вертикально вверх. После старта ракета начинает отклонятся программой управления с тем, чтобы при выходе на орбиту, она имела направление движения параллельно земле (по-грамотному это называется угол тангажа). Давайте сделаем модель, которая будет это учитывать. Если использовать методы структурного моделирования, это будет сделать не сильно сложнее, чем модель артиллерийского снаряда, который мы перехватывали в задаче про волка и зайца.

Методы структурного моделирования позволят нам создать набор компонентов, из которых, как из кубиков лего, можно собирать одну-, двух- и трехступенчатые ракеты. 

А для того, чтобы наша ракета была не абстрактная, возьмём данные по ракете «СОЮЗ», к тому же на хабре уже есть решение этой задачи.  Больше спасибо автору, что уже собрал все необходимые данные.  https://habr.com/ru/articles/649961/

Тем, кто первый раз пытается создать структурную модель, и кому покажутся сложными физическая модель сферического коня в вакууме или численное интегрирование обыкновенных дифференциальных уравнений, я рекомендую почитать статью про противоракетную оборону Израиля, где все это объясняется на основе знаний математики 4 класса. https://habr.com/ru/articles/878168/

Читать далее

Как услышать протоны менее чем за $100

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели9.7K

При проведении МРТ-сканирования используется явление под названием «ядерный магнитный резонанс» (ЯМР). Определённые виды атомных ядер, в том числе ядра атомов водорода в молекуле воды, могут колебаться в магнитном поле, и эти колебания можно обнаружить с помощью проволочных катушек. МРТ-сканеры используют интенсивные магнитные поля, которые создают резонанс с частотой от десятков до сотен мегагерц. Однако другой прибор, использующий на ЯМР, использует колебания с гораздо более низкой частотой: магнитометр протонной прецессии, который часто используется для измерения магнитного поля Земли.

Магнитометры протонной прецессии существуют уже несколько десятилетий и когда-то часто использовались в археологии и разведке полезных ископаемых. Высококлассные модели могут стоить тысячи долларов. Затем, в 2022 году, немецкий инженер Александр Мамм разработал очень простую схему для упрощённой модели. Недавно я собрал его по этой схеме и могу подтвердить, что с помощью менее полукилограмма магнитного провода AWG 22, двух обычных интегральных схем, полевого транзистора с металлооксидным полупроводником (MOSFET), нескольких дискретных компонентов и двух пустых 113-граммовых баночек из-под приправы Morton можно очень точно измерить магнитное поле Земли.

Читать далее

А если она всё-таки вертится? Подсказка Гёделя о возможной природе тёмной энергии

Время на прочтение9 мин
Охват и читатели23K

Привет, Хабр.

Одним из самых успешных переводов, опубликованных в уходящем году в этом блоге, стала статья «Что, если мы никогда не найдём тёмную материю?», которой я завершил февраль. Среди множества объяснений, почему тёмная материя остаётся «чёрным ящиком» астрономии, авторы предполагают, что она может быть заключена за горизонтами событий чёрных дыр — как огромных, так и совсем мелких, которые из-за своего малого или даже микроскопического размера до сих пор не обнаружены. Однако уже после этой статьи данная идея получила на Хабре интересное развитие: сначала в марте уважаемый @SLY_G перевёл статью Роберта Ли «Заперта ли наша Вселенная внутри чёрной дыры»? Затем уже в июне в корпоративном блоге FirstVDS вышла крайне успешная статья уважаемого @virtual_explorer «Наша Вселенная находится внутри сверхмассивной черной дыры — исследование» (почти 190 000 просмотров). Эти источники также вывели меня на интересную гипотезу о природе тёмной энергии, о которой я и хочу рассказать вам под катом. Гипотеза глубоко оккамовская, поэтому не премину посоветовать вам книгу Джонджо Мак-Фаддена «Жизнь проста», где подробно разобрано применение метода Оккама в науке.

Читать далее

Мебельный гвоздь в крышку гроба AGI

Уровень сложностиСредний
Время на прочтение15 мин
Охват и читатели9.3K

Все мы слышали, что нейросети уже решают сложнейшие олимпиадные задачи по математике, пишут код лучше людей и вообще «кожаным мешкам» осталось недолго. Но есть нюанс. Если задача похожа на то, что было в датасете, они её решат. Если же задача требует построения геометрической модели и физической интуиции, отличается от типичных моделей из задачников — начинается «галлюцинаторный цирк».

Сегодня я покажу вам одну физическую задачу про мебельный гвоздь. Она выглядит совершенно безобидно, но на ней ломаются ВСЕ современные LLM. Более того, если эту задачу загонять в одну и ту же нейросетку много раз, она каждый раз выдает новое бредовое "решение" с новым неправильным "ответом"!

А заодно мы поймем: как составлять задачи, чтобы человек их решал, а AI — нет.

Читать далее

Электричество, проводимость и сверхпроводимость в виртуальной Вселенной

Уровень сложностиСредний
Время на прочтение17 мин
Охват и читатели5.7K

Предыдущие части:

«Геометрическая головоломка на выходные»,
«Электродинамика виртуальной Вселенной»,
«Механика виртуальной Вселенной»,
«Квантовая механика виртуальной Вселенной (Часть I)»,
«Квантовая механика виртуальной Вселенной (Часть II)»
«Релятивизм виртуальной Вселенной»
«Космология виртуальной Вселенной (Часть I)»
«Космология виртуальной Вселенной (Часть II)»

Здравствуйте, дорогие читатели.

В предыдущих статьях мы последовательно вывели физическую теорию, которая неплохо описывает физические явления в виртуальной Вселенной, с жителями которой мы уже познакомились. Но, мало только вывести теорию. Конечно, в стародавние времена Копернику было достаточно сместить точку отсчёта с Земли на Солнце — небесная механика выровнялась с земной, а наблюдаемые результаты совпали с теми, что давали эпициклы. Формально ничего не изменилось, но изменилась точка зрения и, Voila!

В современном мире так просто уже не бывает. Теория ради теории — всего лишь набор тезисов. Теория должна приносить практическую пользу и давать конкретные предсказания. Поэтому сегодня давайте попробуем описать с помощью того, что у нас получилось, то, с чем инженеры нашей виртуальной Вселенной взаимодействуют постоянно: электрические цепи, токи, сопротивления, полупроводники и сверхпроводники. Эти явления изучены чрезвычайно хорошо, на их основе созданы сложнейшие приборы, и они давно работают на практике. Однако при попытке осмыслить онтологию происходящего — то есть понять, что именно там на самом деле происходит, неизбежно возникает множество вопросов. Попробуем снять хотя бы часть из них и, возможно, «вытянуть» из этого какую-нибудь практическую пользу.

Читать далее

Транснейроны: на пути к созданию искусственного мозга

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели8.4K

Пока мы не можем полностью воспроизвести работу мозга в «железе». Но, учёные идут другим путём и создают устройства, которые имитируют отдельные элементы нервной системы. В августе этого года в Nature Communications вышла работа, посвящённая аппаратным искусственным нейронам на основе диффузионных мемристоров. Авторы ввели для таких устройств новый термин — транснейроны.

Диффузионные мемристоры – это разновидность мемристоров, в которых электрическая проводимость определяется временной динамикой диффузии наночастиц (например, серебра) в оксидной матрице.

Предлагаю подробнее погрузиться в новое открытие ученых.

Читать далее

Вихревая трубка Ранка–Хилша: Эксперимент с применением различных завихрителей и разделительных прокладок в её составе

Время на прочтение11 мин
Охват и читатели8.1K

Попытка экспериментальной проверки теоретических предположений о физической сущности появления холода в вихревых трубках.

Ранее я выдвигал версию механизма работы охлаждающей трубки на эффекте  Ранка-Хилша, где в качестве основы было взято охлаждение струи воздуха за счёт трансформации  внутренней энергии самого газа в кинетическую энергию струи (выше скорости звука). При  этом внутри вихревой трубки происходит  передача тепла между  тёплыми стенками устройства к остывшей сверхзвуковой струе газа, а затем обратно от холодных стенок к нагретому при торможении газу.

Чтобы как-то подтвердить эту версию я купил в интернете китайскую вихревую трубку на эффекте Ранка-Хилша (далее ВТР) за приемлемые для меня 4тыс. рубле. (см.рис.1-2.) Покупать «настоящую»  из США или Канады за 50тыс. рублей я не стал.

Читать далее

Российские физики предложили искать темную материю посреди квантового шума

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели16K

Большой коллектив российских ученых из ведущих физических институтов Москвы, Нижнего Новгорода, Сарова и Санкт-Петербурга представил амбициозный проект нового эксперимента по поиску аксионов — гипотетических частиц, считающихся одними из главных кандидатов на роль темной материи. Предложенная установка, получившая название «Космологический Аксионный Саровский Галоскоп» (CASH), будет использовать уникальные однофотонные детекторы на основе джозефсоновских переходов, что позволит ей преодолеть фундаментальный квантовый предел чувствительности и достичь рекордных показателей в ранее неисследованной области масс. Этот прорыв может наконец пролить свет на природу загадочной субстанции, составляющей более 80% всей материи во Вселенной. Описание проекта опубликовано  в журнале Physical Review D.

Читать далее

Физики предложили универсальный язык для мира электричества, чтобы завершить полуторавековой спор

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели33K

Ученые из МФТИ разработали и предложили новую систему единиц для электродинамики, способную примирить два главенствующих, но исторически несовместимых подхода. Эта компромиссная система, названная авторами физико-технической (ФТ), сохраняет практическое удобство Международной системы единиц (СИ), используемой инженерами по всему миру, и в то же время отражает теоретическую стройность и симметрию гауссовой системы (СГС), предпочитаемой физиками-теоретиками. Результаты исследования опубликованы в журнале «Современная электродинамика».

Читать далее

Космология виртуальной Вселенной (Часть II)

Уровень сложностиСредний
Время на прочтение18 мин
Охват и читатели9K

Предыдущие части:

«Геометрическая головоломка на выходные»,
«Электродинамика виртуальной Вселенной»,
«Механика виртуальной Вселенной»,
«Квантовая механика виртуальной Вселенной (Часть I)»,
«Квантовая механика виртуальной Вселенной (Часть II)»
«Релятивизм виртуальной Вселенной»
«Космология виртуальной Вселенной (Часть I)»

Здравствуйте, дорогие читатели.

В предыдущей части мы рассмотрели космологию виртуальной Вселенной в квазистатическом приближении и показали, что глобальный радиус компактного пространства S³ играет роль фундаментального параметра, связывающего между собой масштаб энергий, массы вихревых решений и ряд физических констант. Для понимания дальнейшего изложения знакомство с предыдущей частью является необходимым; все основные допущения и обозначения вводились именно там.

В этой статье мы сделаем следующий, более рискованный шаг. Мы перейдём от статической картины к обсуждению динамики фазовой Вселенной, рассмотрим различие между глобальным и локальным временем, а также покажем, каким образом в SU(2)-фазовой модели могут возникать эффекты, традиционно интерпретируемые как космологическое расширение и красное смещение — без прямого введения метрического расширения пространства.

Важно подчеркнуть, что дальнейшие рассуждения носят исследовательский характер. Цель этой части — не предложить завершённую альтернативу стандартной космологии, а проверить, насколько далеко можно продвинуться, оставаясь в рамках ранее введённой фазовой структуры, и какие новые вопросы при этом неизбежно возникают.

Читать далее

Ближайшие события

Новый математический метод помогает спутникам увидеть истинное движение Гольфстрима

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели9.1K

Международная команда океанографов и специалистов по анализу данных из ведущих научных центров США, Франции, России и Австрии разработала и успешно применила новый метод, позволяющий с беспрецедентной точностью отделять медленные, крупномасштабные океанские течения от быстропеременных волновых помех. Используя сложный математический аппарат, известный как динамическая декомпозиция мод, ученым удалось «очистить» данные новейшего спутника SWOT и впервые получить четкую картину геострофически сбалансированных движений в такой динамически сложной области, как Гольфстрим. Этот прорыв открывает новые горизонты для климатического моделирования, прогнозирования погоды и понимания глобальной циркуляции океана. Результаты исследования опубликованы в журнале Earth and Space Science.

Читать далее

Космология виртуальной Вселенной (Часть I)

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели6.7K

Предыдущие части:

«Геометрическая головоломка на выходные»,
«Электродинамика виртуальной Вселенной»,
«Механика виртуальной Вселенной»,
«Квантовая механика виртуальной Вселенной (Часть I)»,
«Квантовая механика виртуальной Вселенной (Часть II)»
«Релятивизм виртуальной Вселенной»

Здравствуйте, дорогие читатели.

Предлагаю Вашему вниманию продолжение цикла статей о физике виртуальной Вселенной. Мы прошли длинный путь и смогли многое описать в рамках поля U(x) \in SU(2) на сфере S3 с помощью модели Скирма, дополненной членом потенциала вакуума -V(U) и расширенной на всё пространство. В самом начале, когда мы принимали гипотезу об общей замкнутости геометрии нашей виртуальной Вселенной и представили её в виде сферы S3 — мы приняли её радиус >= 1028 сантиметров, чтобы не конфликтовать с наблюдениями жителей этой самой виртуальной Вселенной о «плоскости» пространства. На тот момент, объяснение такого выбора было «заметено под ковёр», о чём я честно написал в заключении первой статьи. Кроме того я отметил, что к этому параметру нам ещё придётся вернуться. Это время пришло. Итак, давайте займёмся большим, в прямом и переносном смысле, делом — попробуем описать космологию нашей виртуальной Вселенной.

Дисклеймер: Эта глава в первую очередь адресована специалистам и тем, кто привык критически относиться к фундаментальным моделям, хотя, надеюсь, она будет интересна и более широкой аудитории.

Я не рассматриваю изложенную здесь модель как завершённую или окончательную теорию. Скорее, это попытка последовательно проверить, может ли единая фазовая SU(2)-структура дать связное описание известных физических масштабов — от микрофизики до космологии без введения дополнительных постулатов.

Читать далее

Нобелевская премия-2025: кто главные бенефициары научных открытий ученых-лауреатов?

Уровень сложностиСредний
Время на прочтение7 мин
Охват и читатели6.3K

Нобелевскую премию вручают за самые передовые открытия — и, конечно, у них есть большой коммерческий потенциал. Право авторства и право на саму разработку — это несколько разные вещи, и возможность получить действительно высокую прибыль будет у тех, кто владеет патентами. Впрочем, это не единственный фактор, который определяет, кто сможет получить непосредственную выгоду от работ ученых-лауреатов в 2025 году. 

Читать далее

В поисках портала в иные миры: эксперимент DANSS сужает пространство для гипотез

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели12K

Большой коллектив российских ученых из ведущих научных центров, включая Физический институт им. П.Н. Лебедева РАН, Объединенный институт ядерных исследований, НИЦ «Курчатовский институт», МФТИ и Институт ядерных исследований РАН, провел один из самых чувствительных в мире поисков больших дополнительных измерений Вселенной. С помощью уникального детектора DANSS, расположенного в непосредственной близости от энергетического ядерного реактора на Калининской АЭС, физики проанализировали рекордные 5.8 миллиона событий взаимодействия антинейтрино. Хотя прямого подтверждения существования «скрытых миров» найдено не было, полученные результаты установили самые жесткие на сегодняшний день ограничения на их возможные параметры и с высокой долей уверенности исключили гипотезу о дополнительных измерениях как объяснение многолетних загадок в физике нейтрино. Результаты исследования опубликованы в журнале JETP Letters.

Читать далее

Ученые обнаружили скрытые ускорители частиц в околоземной космической плазме

Время на прочтение5 мин
Охват и читатели12K

Международный коллектив ученых из Института космических исследований Российской академии наук (ИКИ РАН), МФТИ и Бэйханского университета (Китай) обнаружил ранее неизвестный механизм ускорения частиц и перераспределения энергии в магнитном хвосте Земли. Анализируя данные миссии NASA Magnetospheric Multiscale (MMS), исследователи показали, что турбулентные потоки плазмы, удаленные от основной зоны высвобождения энергии, сами становятся источниками мощных, но локальных «микро-ускорителей». Эти процессы сопровождаются генерацией интенсивных электростатических волн, служащих маркерами скрытых событий. Результаты работы, меняющие представление о динамике космической плазмы, опубликованы в журнале JETP Letters. Исследование поддержано грантом 23-12-00031 Российского научного фонда.

Читать далее

Не просто трещина: ученые раскрыли волновую природу разрушения льда

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели11K

Коллектив ученых из МФТИ и Института проблем механики им. А.Ю. Ишлинского РАН разработал новую составную упругопластическую модель, которая с высокой точностью описывает сложное поведение льда при низкоскоростных ударах. Эта модель впервые позволяет детально проследить, как ударное воздействие порождает сложную картину внутренних напряжений и деформационных волн, приводящую к образованию и росту трещин. Исследование крайне важно для развития безопасных технологий освоения Арктики. Результаты работы, выполненной при поддержке гранта Российского научного фонда (грант 23-21-00384), опубликованы в «Сибирском журнале вычислительной математики».

Читать далее

Идущий жидкою тропою: гидромотор

Время на прочтение10 мин
Охват и читатели26K

Мы знаем множество интересных видов двигателей, которые позволяют приводить в движение разнообразные устройства и механизмы людей. 

Двигатели эти существуют абсолютно разных конструкций и типов источника приводного усилия. 

В свете сказанного, зададимся вопросом: а может ли жидкость выступать в качестве двигателя?! Вернее сказать, в качестве рабочей среды этого двигателя? 

Мы видели двигатели с электрическим приводом, видели пневматические и даже внутреннего сгорания... 

Однако, думается, что подавляющему большинству, мало знаком следующий тип двигателя, который называется «гидромотор»! :-)

Читать далее
1
23 ...

Вклад авторов