Как стать автором
Обновить
45.5

SQL *

Формальный непроцедурный язык программирования

Сначала показывать
Порог рейтинга
Уровень сложности

Реляционные базы данных в книге «Двенадцать стульев»: как устроен архив Коробейникова

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров490

Меня зовут Екатерина Петрова, я автор медиа «вАЙТИ» и аналитик. Перечитывая свой любимый роман И. Ильфа и Е. Петрова «Двенадцать стульев», а именно сцену с архивариусом Коробейниковым, я вдруг поняла: его бумажный архив ордеров на имущество бывших дворян не что иное, как идеальный пример реляционной базы данных. Алфавитные указатели — это индексы, книги учета — таблицы с первичными ключами, ордера — настоящие транзакции.

Читать далее

Новости

Особенности SUMMARIZECOLUMNS в DAX

Уровень сложностиПростой
Время на прочтение2 мин
Количество просмотров885

Привет, Хабр! В аналитическом языке DAX одной из важных функций является SUMMARIZECOLUMNS. Эта функция готовит данные для дашбордов, также реализует декартово произведение полей группировки (если поля группировки из разных таблиц). Для понимания DAX полезно ознакомиться с особенностями SUMMARIZECOLUMNS, интересующимся деталями SUMMARIZECOLUMNS — добро пожаловать под кат :)

Читать далее

Портирование фреймворка ROOT на архитектуру e2k

Уровень сложностиПростой
Время на прочтение9 мин
Количество просмотров976

Современная наука невозможна без компьютерных вычислений — от обработки результатов измерений до моделирования процессов. Одним из наиболее широко используемых инструментов для вычислений в ядерной физике и физике высоких энергий является фреймворк ROOT, разрабатываемый в CERN.

Собственная архитектура e2k с очень длинной машинной командой VLIW не позволяет отечественным процессорам Эльбрус без портирования нативно запускать программное обеспечение, в том числе и ROOT.

В статье рассмотрим "айсберг" проблем, с которыми пришлось столкнуться в ходе портирования ROOT, а такжк сферу и примеры его применения.

О портировании и тестах ROOT читайте далее

Регулярная отчетность. Цифры решают все

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров451

В послевоенное советское время убивали словом, по крайней мере, так было принято в кругу друзей прекрасного поэта Шефнера. Никакой крамолы, но это только полуправда: в Люблино уже тогда куда больше ценилась финка за голенищем, но оставим былое.

Как говорят нам опытные инфоцыгане коучи в модно-стильно-молодежно снятых роликах на YouTube RuTube — сейчас время data driven подхода! А значит убивают нынче цифрой. Я, если кому-то интересно, предпочитаю, семерку, она более всего походит на старый добрый мушкет или, на крайний случай, серп.

Шутки в сторону. В современном мире, когда каждая наша «улыбка» — не более чем поток единиц и нулей, который позволяет системе распознавания лиц списать с нас 67 рублей за проезд, цифры, действительно, определяют многое. Раньше обидным было слышать про небольшой размер достоинства, теперь, у топ-менеджмента корпораций досаду, гнев и злость вызывать маленькая EBITDA или ROI. О времена! О нравы! Да простит меня Александр Сергеевич.

10 лет назад я впервые познал силу цифр. До того момента я думал, что аналитика — это красивые отчеты, за которые платят много денег западным консалтинговым компаниям ради имиджа. Функциональное назначение трудов PWC, Mckinsey и прочих сильных мира сего ограничивалось следующим: орудие для удара по голове нерадивому сотруднику, оконный ограничитель летом в душном офисе, ну и, конечно, подставка под шатающийся стул. Все. То есть совсем все. Ни разу не видел, чтобы кто-то открыл их для того, чтобы принять какое-то важное решение, по крайней мере, так не везло мне. Творцы этих шедевров: несчастные стажеры, дизайнеры и прочие ребята в красивых костюмах с очень утомленными лицами и натянутыми улыбками, за которые тогда хотя бы не списывали деньги, сами в кулуарах признавали тщетность своих мук. Впрочем, это не мешало им продолжать ночами повторять сизифов труд, чтобы потом потратить заработанное на волшебные таблетки самого разного цвета и магических свойств.

Читать далее

Дело о похищенном рюкзаке: SQL, сложность и слепая вера в ИИ

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров912

1. Тревожный звонок

Был хмурый лондонский вечер, когда в нашу скромную квартиру на Бейкер-стрит ворвался взволнованный инспектор Лестрейд.

— Холмс! Нам срочно нужна ваша помощь! — воскликнул он, сбрасывая с плеч дождевик. — В городе орудует хитрый вор. Он крадёт предметы, но уносит их только в одном рюкзаке ограниченной вместимости. Нам нужно вычислить, какие именно вещи он унесёт, чтобы максимизировать свою добычу!

Читать далее

Тестирование систем и движков массивно-параллельных вычислений. Часть II. TPC-DS

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров1.3K

Привет! Сегодня я продолжаю тему сравнения систем и движков массивных параллельных вычислений. В прошлой публикации я раскрыл основные принципы проведения тестирования, которыми руководствуется наша команда, и привел результаты как реальных промышленных сценариев, так и синтетических тестов. Материал вызвал интерес и дискуссию: значит, он актуальный и полезный. Для кого-то факты стали убедительными, а кто-то усомнился в объективности результатов, поэтому, как и было обещано, я делюсь материалами сравнительного тестирования, выполненного по общепринятому стандарту TPC-DS. Сегодня вы узнаете, повлияла ли смена методики на результаты.

Читать далее

«IT-Планета 2025»: задачи второго этапа по PostgreSQL

Уровень сложностиПростой
Время на прочтение29 мин
Количество просмотров2.5K

Мы продолжаем свое участие в международной олимпиаде «IT-Планета».  Как и в прошлые годы, проводился конкурс по SQL, состоящий из трех этапов: теоретический и практический туры, проходящие онлайн, и финальный очный тур.

В первом туре участвовало свыше 4 500 человек, из которых 245 были отобраны во второй. В этом году я занимался разработкой задач и проведением первых двух туров. Предлагаю перейти к рассмотрению задач практического этапа.

Читать далее

Плохие JOIN’ы: приемы, которые (нечаянно) кладут прод

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров21K

Привет, Хабр!

В этой статье разбираем один из самых коварных способов убить базу — плохие JOIN'ы. Казалось бы, простое дело: связать пару таблиц — и вперёд. Но если в ON засунуть LOWER(email), забыть про индексы или перепутать LEFT JOIN с INNER — сервер мигом начнет дышать на ладан.

Читать далее

Избыточная статистика тормозит Postgres? Настраиваем сэмплирование в pg_stat_statements

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров1.5K

pg_stat_statements — стандартное расширение PostgreSQL для сбора статистики выполнения SQL-запросов. Статистика позволяет анализировать поведение запросов во времени, выявлять проблемные участки и принимать обоснованные решения по оптимизации. Однако в системах с высокой конкуренцией pg_stat_statements само по себе может стать узким местом и вызывать просадки производительности. В этой статье разбираем, в каких сценариях расширение становится источником проблем, как устроено сэмплирование и в каких случаях его применение позволяет снизить накладные расходы.

Читать далее

Как заставить вашу базу данных летать, а не ползать. Часть 2 – когда репликации недостаточно и пора использовать шардинг

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров5.3K

Всем привет! На связи снова Илья Криволапов — системный аналитик в SENSE, где мы трудимся на проекте одного из цветных банков РФ. Работаю в профессии уже пятый год и, несмотря на мою фамилию, с продом у нас в целом тёплые отношения. 

Помимо боевых задач, я преподаю курс «Хранение и обработка больших объемов данных» и за это время накопил немало практических кейсов и наблюдений. Всё это добро я решил не держать при себе и собрал самое полезное в виде ультимативного гайда по оптимизации и грамотному проектированию баз данных с расчетом на масштабирование, который сейчас публикую на Хабре.

Цикл состоит из 3 частей. В первой мы обсудили два базовых подхода к масштабированию БД: вертикальный и горизонтальный. Поговорили о плюсах, минусах и о том, как делать точно не стоит. 

Во второй части – то есть сейчас – мы нырнём глубже в мир горизонтального масштабирования и разберем три первых способа шардирования: по диапазону, по хэшу и по географическим зонам. Я расскажу, как каждый из них работает, где пригодится и в каких случаях может дать сбой.

Материал по-прежнему будет полезен всем, кто заботится о «здоровье» базы данных: DBA, архитекторам, DevOps-инженерам, аналитикам и разработчикам.

Готовы продолжать? Тогда поехали!

Читать далее

Эпизод 1: «Скобка, паб и виски с валидацией»

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров285

KafkaRail гудел на фоне.

Паб The Broken Tag, где начиналось утро героев, только просыпался — запах старого эля, крошки лог‑файлов, и бильярдный стол под тусклым светом прожектора. Через узел маршрута /corp/news метропоезд пронёсся, как push‑уведомление на рассвете. День в Киберляндии начинался.

JSON откинул капюшон куртки BitStone Protocol с QR‑патчем на рукаве, кивнул Mr. Parseley и заказал, как обычно, Schema Fresca. Он прошёл к бильярдному столу английского пула, стоявшему под старым плакатом «Keep Calm and Close Tags», где RAMmy спорил с TryCatch о синтаксисе ударов.

Читать далее

Как настроить ежедневный алертинг по маркетинговым метрикам с помощью SQL

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров2K

Привет, Хабр! На связи Антон Прыгин, аналитик данных в Garage Eight. Расскажу, как с помощью простых SQL-запросов и базовых математических методов получилось построить систему ежедневного мониторинга и алертинга маркетинговых метрик, которая работает в связке с таск-трекером.

Погнали

Учимся читать SQL SELECT

Уровень сложностиПростой
Время на прочтение21 мин
Количество просмотров13K

Я отчётливо помню, как сидел на втором курсе на лабах по БД и долго и мучительно методом научного тыка подбирал порядок слов в SELECT-запросе с GROUP BY, чтобы он вернул нужный мне преподу результат. Потому что я не понимал, как работает SELECT, хотя был прилежным (на программистских курсах) студентом, ходил на все лекции и делал лабы за себя и пару "тех парней".

Двадцать лет спустя, когда я встал по ту сторону баррикад и начал сам вести лабы по БД, я столкнулся с той же самой проблемой уже у своих студентов. И, так как за двадцать лет я всё-таки понял, как работает SELECT, то придумал для них способ объяснения, который работает хорошо (в моей практике).

Читать далее

Ближайшие события

Витрина данных: сверка с эталоном

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров1.2K

Одним из этапов разработки витрин данных является тестирование результата и подтверждение корректности разработанного функционала. При этом организовано тестирование может быть по-разному.

Определим несколько видов тестирования:

1.     Технические тесты

Техническими тестами легко можно проверить корректность сборки витрины. Из основных видов технических тестов можно выделить:

·       Дубли - проверка на наличие дублей по ключу

·       Разрывы - проверка на разрывы в истории

·       Перекосы - проверка наложения исторических записей друг на друга

·       Даты - проверка корректности формирования дат

·       NULL в ключе - проверка NULL в ключевых и обязательных к заполнению полях

Подробно на этих тестах останавливаться не будем, информация по ним есть в открытом доступе.

2.     Бизнес-тесты

Это набор тестовых запросов, направленных на выявление ошибок в бизнес-данных. Как правило набор бизнес-тестов предоставляет владелец объекта.

Бизнес-тестов может быть великое множество, здесь все зависит от вашего бизнес-домена и от конкретных требований к витрине.

Приведу примеры некоторых бизнес-тестов:

Читать далее

Ошибки, которые можно избежать в SQL: грабли начинающего аналитика

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров5.5K

Привет Хабр! Меня зовут Алёна, я middle-продуктовый аналитик. В свободное время я рассказываю о реальных задачах с работы и делюсь материалами для тех, кто хочет стать аналитиком.

Если ты только начинаешь писать SQL-запросы — вот твой анти-фейл лист: с примерами, пояснениями и короткими лайфхаками, как не получить ошибку из-за лишнего JOIN или пропущенного WHERE.

Читать далее

Анализ плана выполнения запроса с оконной функцией в SQL Server (+бонус)

Уровень сложностиСложный
Время на прочтение7 мин
Количество просмотров2.7K

В статье подробно разбирается план выполнения запроса с оконной функцией в MS SQL Server, проводится сравнительный тест производительности с альтернативным запросом.

Статья будет полезна разработчикам, работающим с аналитическими запросами в SQL Server, а также всем, кто хочет глубже понять логику оптимизатора и влияние различных факоров на планы выполнения.

Читать далее

Нашел, проверил, убедил: как мы организовали генерацию SQL-запросов, проверку сложных данных и при чем здесь Allure

Время на прочтение22 мин
Количество просмотров3K

Привет, Хабр!

Я, Михаил Герасимов, инженер РСХБ-Интех. Уже два года занимаюсь автоматизацией тестирования, и за это время успел написать (и переписать) немало SQL-запросов. Вместе с моим коллегой Михаилом Палыгой мы развиваем инструменты для автоматизированного тестирования, и сегодня расскажем вам о том как мы справляемся с построением сложных SQL-запросов и проверкой объектов в базе данных, на примере нашей библиотеки CheckMateDB для автоматизации тестирования банковской системы ЦФТ-Банк.

В статье опишем проблемы, с которыми сталкивались при ручном написании SQL-запросов и проверке данных: дублирование кода, сложность поддержки, отсутствие единого стиля и низкая информативность тестов. Для решения этих проблем мы разработали инструмент QueryBuilder, который позволяет динамически генерировать SQL-запросы с помощью Java-кода.

Мы создали иерархию классов CriteriaBasic и Table для удобного описания критериев поиска данных в базе, используя паттерн fluent interface. Также мы разработали кастомные классы проверок на базе AssertJ с поддержкой Allure-шагов, которые позволяют проверять сложные многоуровневые объекты с возможностью погружения во вложенные структуры. Для облегчения рутинной работы создали плагин, автоматически генерирующий классы DTO и Table на основе структуры базы данных. Библиотека интегрирована с Hibernate через DaoCommon, что обеспечивает удобное выполнение SQL-запросов и управление сессиями. Результатом стало существенное улучшение читаемости тестов, повышение переиспользуемости кода, стандартизация подхода к тестированию и создание информативных Allure-отчетов.

Читать далее

Пишем движок SQL на Spark. Часть 8: CREATE FUNCTION

Уровень сложностиСредний
Время на прочтение12 мин
Количество просмотров1.1K
В предыдущих сериях ( 1 2 3 4 5 6 7 Ы ) рассмотрели, как написать на Java собственный интерпретатор объектно-ориентированного диалекта SQL, заточенный на задачи подготовки и трансформации наборов данных, и работающий как тонкая прослойка поверх Spark RDD API.

Штука получилась довольно продвинутая, с поддержкой императивщины типа циклов/ветвлений/переменных, и даже с поддержкой пользовательских процедур. И в плане этой самой императивщины расширяемая: может импортировать функции из Java classpath, равно как и операторы выражений. То есть, если необходимо, можно написать функцию на Java, или определить новый оператор, и использовать потом в любом выражении на SQL.


Круто? Ещё как круто. Но как-то однобоко. Если в языке у нас поддерживаются функции, то почему бы не дать нашим пользователям определять их самостоятельно? Вот прямо через CREATE FUNCTION? Тем более, что вся необходимая для этого инфраструктура уже вовсю присутствует. Да и процедуры на уровне интерпретатора у нас уже поддерживаются ведь…



Функция для затравки.

Читать дальше →

Трассировка запросов в Postgres с расширением pg_trace

Уровень сложностиСредний
Время на прочтение11 мин
Количество просмотров3.1K

В рамках статьи расскажем о расширении pg_trace, предназначенном для сбора трассировок запросов в PostgreSQL, соберем трассировку на реальном примере работы приложения, оценим влияние сбора трассировки на производительность и агрегируем данные трассировки.

Читать далее

Записки оптимизатора 1С (ч.12).  СрезПоследних в 1C: Предприятие на PostgreSQL. Почему же так долго?

Уровень сложностиСредний
Время на прочтение11 мин
Количество просмотров4.2K

Этой проблеме уже не менее 15 лет.

На входе: большая база на PostgreSQL. Вполне себе типовые отчеты с не менее типовыми запросами 1C, содержащие обращение к виртуальной таблице СрезПоследних какого-нибудь регистра сведений с большим количеством строк, выполняются неприлично длительное время. Вплоть до нескольких часов.

Причина – оптимизатор строит неверный план запроса. Причем тот же запрос на MS SQL выполняется быстро и оптимизатор не ошибается.

Сейчас будем разбираться в чем ошибается оптимизатор и какие пути решения тут возможны.

Читать далее
1
23 ...

Вклад авторов