Обновить
274.32

Алгоритмы *

Все об алгоритмах

Сначала показывать
Порог рейтинга
Уровень сложности

Алгоритм генерации столбцов (Column Generation)

Уровень сложностиСредний
Время на прочтение16 мин
Охват и читатели4K

Генерация столбцов - подход к решению задач смешанного линейного программирования (MIP) с большим кол-вом переменных или столбцов.

В статье представил теоретическую предпосылку, схему алгоритма и python реализацию подхода. В практической части рассмотрел решение двух задач: задача планирования расписания и задача раскроя.

Читать далее

Метод опорных векторов (SVM). Подходы, принцип работы и реализация с нуля на Python

Уровень сложностиСложный
Время на прочтение14 мин
Охват и читатели37K

Метод опорных векторов (Support Vector Machines или просто SVM) — мощный и универсальный набор алгоритмов для работы с данными любой формы, применяемый не только для задач классификации и регрессии, но и также для выявления аномалий. В данной статье будут рассмотрены основные подходы к созданию SVM, принцип работы, а также реализации с нуля его наиболее популярных разновидностей.

Читать далее

«Кодиеум» — новая отечественная разработка для криптографии будущего

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели4.1K

Российская компания «Криптонит» представила на «РусКрипто’2024» криптографический механизм «Кодиеум». Он устойчив ко всем известным атакам и останется стойким даже в случае появления мощного квантового компьютера.

Читать далее

Метод K-ближайших соседей (KNN). Принцип работы, разновидности и реализация с нуля на Python

Уровень сложностиСложный
Время на прочтение9 мин
Охват и читатели80K

К-ближайших соседей (K-Nearest Neighbors или просто KNN) — алгоритм классификации и регрессии, основанный на гипотезе компактности, которая предполагает, что расположенные близко друг к другу объекты в пространстве признаков имеют схожие значения целевой переменной или принадлежат к одному классу.

Читать далее

Дерево решений (CART). От теоретических основ до продвинутых техник и реализации с нуля на Python

Уровень сложностиСложный
Время на прочтение22 мин
Охват и читатели27K

Дерево решений CART (Classification and Regressoin Tree) — алгоритм классификации и регрессии, основанный на бинарном дереве и являющийся фундаментальным компонентом случайного леса и бустингов, которые входят в число самых мощных алгоритмов машинного обучения на сегодняшний день. Деревья также могут быть не бинарными в зависимости от реализации. К другим популярным реализациям решающего дерева относятся следующие: ID3, C4.5, C5.0.

Читать далее

Бэггинг и случайный лес. Ключевые особенности и реализация с нуля на Python

Уровень сложностиСложный
Время на прочтение13 мин
Охват и читатели22K

Далее пойдёт речь про бэггинг и мой самый любимый алгоритм — случайный лес. Не смотря на то, что это одни из самых первых алгоритмов среди семейства ансамблей, они до сих пор пользуются большой популярностью за счёт своей простоты и эффективности, зачастую не уступая бустингам в плане точности. О том, что это такое и как работает, далее в статье.

Читать далее

Quantization Deep Dive, или Введение в современную квантизацию

Уровень сложностиСредний
Время на прочтение16 мин
Охват и читатели45K

Привет! Меня зовут Василий Землянов, я занимаюсь разработкой ML-инфраструктуры. Несколько лет я проработал в команде, которая делает споттер — специальную маленькую нейросетевую модельку, которая живёт в умных колонках Яндекса и ждёт от пользователя слова «Алиса». Одной из моих задач в этой команде была квантизация моделей. На пользовательских устройствах мало ресурсов, и мы решили, что за счёт квантизации сможем их сэкономить — так в итоге и вышло.

Потом я перешёл в команду YandexGPT. Вместо маленьких моделей я стал работать с очень крупными. Мне стало интересно, как устроена квантизация больших языковых моделей (LLM). Ещё меня очень впечатляли истории, где люди берут гигантские нейросети, квантизируют в 4 бита и умудряются запускать их на ноутбуках. Я решил разобраться, как это делается, и собрал материал на доклад для коллег и друзей. А потом пришла мысль поделиться знаниями с более широкой аудиторией, оформив их в статью. Так я и оказался на Хабре :)

Надеюсь, погружение в тему квантизации будет интересно как специалистам, так и энтузиастам в сфере обучения нейросетей. Я постарался написать статью, которую хотел бы прочитать сам, когда только начинал изучать, как заставить модели работать эффективнее. В ней мы подробно разберём, зачем нужна квантизация и в какой момент лучше всего квантизовать модель, а ещё рассмотрим разные типы данных и современные методы квантизации.

Читать далее

Основные типы распределений вероятностей в примерах

Уровень сложностиСредний
Время на прочтение15 мин
Охват и читатели91K

Статистические исследования и эксперименты являются краеугольным камнем развития любой компании. Особенно это касается интернет-проектов, где учёт количества пользователей в день, времени нахождения на сайте, нажатий на целевые кнопки, покупок товаров является обычным и необходимым явлением. Любые изменения в пользовательском опыте на сайте компании (внешний вид, структура, контент) приводят к изменениям в работе пользователя и, как результат, изменения наблюдаются в собираемых данных. Важным элементом анализа изменений данных и его фундаментом является использование основных типов распределений случайных величин, от понимания которых напрямую зависит качество оценки значимости наблюдаемого изменения. Рассмотрим их подробнее на наглядных примерах.

Читать далее

ИИ в 3D: Где мы сейчас и какое будущее нас ждёт? (Часть 3)

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели4.2K

Мир, в котором мы с вами живём и который непосредственно ощущаем, является объёмным: расположение любой точки в нём можно описать тремя координатами, и этот факт элементарно зашит в нашу природу. Чем больше “понимания” система искусственного интеллекта будет иметь относительно истинной сущности вещей, включая их расположение, форму и объем, тем легче она будет справляться с задачами, которые до сих пор мог выполнять только человек. 

В этой статье разберём, как ИИ помогает решать одну из ключевых задач робототехники, а именно - понимание и ориентация в объёмных пространствах!

Читать далее

9 Синтез и коррекция систем автоматического регулирования (САР)

Время на прочтение15 мин
Охват и читатели12K

Продолжаем публикацию лекций по предмету "Управление в технических системах". Кафедра "Ядерные энергетические установки" МГТУ им. Н.Э. Баумана. Автор: Олег Степанович Козлов.

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. Частотные характеристики звеньев и систем автоматического управления регулирования. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

Читать далее

Алгоритмы AdaBoost (SAMME & R2). Принцип работы и реализация с нуля на Python

Уровень сложностиСложный
Время на прочтение11 мин
Охват и читатели9.1K

Следующим мощным алгоритмом машинного обучения является AdaBoost (adaptive boosting), в основе которого лежит концепция бустинга, когда слабые базовые модели последовательно объединяются в одну сильную, исправляя ошибки предшественников.

В AdaBoost в качестве базовой модели используется пень решений (могут использоваться другие модели) — дерево с небольшой глубиной, которому присваивается вектор весов размера N, каждое значение которого соответствует определённому значению y_train и изначально равно 1 / N, где N — количество образцов в обучающей выборке. Каждый следующий пень обучается с учётом весов, рассчитанных на основе ошибок предыдущего прогноза. Также для каждого обученного пня отдельно рассчитывается вес, используемый для оценки важности итоговых прогнозов.

Читать далее

Градиентный бустинг. Реализация с нуля на Python и разбор особенностей его модификаций (XGBoost, CatBoost, LightGBM)

Уровень сложностиСложный
Время на прочтение28 мин
Охват и читатели42K

На сегодняшний день градиентный бустинг (gradient boosting machine) является одним из основных production-решений при работе с табличными, неоднородными данными, поскольку обладает высокой производительностью и точностью, а если быть точнее, то его модификации, речь о которых пойдёт чуть позже.

В данной статье представлена не только реализация градиентного бустинга GBM с нуля на Python, но а также довольно подробно описаны ключевые особенности его наиболее популярных модификаций.

Читать далее

Extropic: Добро пожаловать в Термодинамическое Будущее (перевод)

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели7.2K

Всем привет, Меня зовут Богдан Печёнкин. Я соавтор Симулятора ML на Karpov.Courses и фаундер AI Dating Copilot стартапа Adam.

Только что Мне на глаза попалась одна новость от компании Extropic с новостями из мира квантовых компьютеров, которую Мне захотелось перевести и прокомментировать.

Extropic - лаборатория, разрабатывающая квантовые вычисления и алгоритмы искусственного интеллекта на их основе.

Тема квантовых вычислений интересна и важна, хоть и вокруг неё полно разного рода спекуляций и булшита. Предсказывают, что квантовые вычисления отбросят на обочину истории все современные системы шифрования, а также послужат фундаментом для инфраструктуры дата центров следующего поколения.

Читать далее

Ближайшие события

Криптографические пруфы zkSNARKs для масштабирования и безопасности

Уровень сложностиСложный
Время на прочтение15 мин
Охват и читатели4.9K

Привет, Хабр! Меня зовут Сергей Прилуцкий, я руковожу отделом исследований компании MixBytes. Мы занимаемся аудитами безопасности смарт-контрактов и исследованиями в области блокчейн-технологий. В числе прочего занимаемся и направлением zero-knowledge. Эта статья подготовлена по мотивам моего доклада на Highload про zkSNARKs. Это одна из самых горячих тем в современной криптографии. Они используются для обеспечения приватности и масштабируемости в децентрализованных системах. Поговорим, как масштабировать криптографические системы, какие проблемы существуют у снарк-алгоритмов и зачем они нужны.

Читать далее

Стекинг и блендинг в ML. Ключевые особенности и реализация с нуля на Python

Уровень сложностиСложный
Время на прочтение11 мин
Охват и читатели20K

Среди всех методов ансамблирования особое внимание заслуживают две очень мощные техники, известные как стекинг (stacked generalization) и блендинг, особенность которых заключается в возможности использования прогнозов не только однородных, но и сразу нескольких разных по природе алгоритмов в качестве обучающих данных для другой модели, на которой будет сделан итоговый прогноз. Например, прогнозы логистической регрессии и градиентного бустинга могут быть использованы для обучения случайного леса, на котором уже будет выполнен итоговый прогноз.

Стекинг и блендинг очень схожи между собой, однако между ними есть существенные различия, заключающиеся в разделении и использовании тренировочных данных. Рассмотрим более подробно как это происходит.

Читать далее

Трансформеры, группы преобразований и self-attention

Уровень сложностиСложный
Время на прочтение10 мин
Охват и читатели6.2K

В подвижном мире развивающихся нейросетевых архитектур главную роль играет эффективность работы моделей. Тонкая настройка сетей под конкретные задачи предусматривает интеграцию в них априорных знаний. Делается это посредством стратегических корректировок архитектур сетей. Это — процедура, выходящая за рамки подстройки параметров. Речь идёт о внедрении в нейросеть информации, которая позволит сети понять то, что нужно её создателю. Один из способов это сделать заключается в использовании априорных знаний геометрического характера. Именно этому и посвящена данная статья.

Читать далее

Пароль как мелодия. Генерация стойких паролей в музыкальных аккордах

Время на прочтение3 мин
Охват и читатели4.4K


Несмотря на популярность парольных менеджеров, никто не отменяет необходимость в реальном запоминании длинных стойких паролей. В крайнем случае, мастер-пароль для самого парольного менеджера ведь надо запомнить.

К сожалению, человеческая память не приспособлена для запоминания абсолютно случайных символов, включая буквы в разных регистрах, цифры и специальные символы. Лучшие профессионалы на чемпионате мира по памяти используют ассоциации и фантазию с выстраиванием сюжета истории, в которой последовательные карты или цифры ассоциируются с различными объектами и действиями. В виде истории можно запомнить очень длинную последовательность событий (случайных символов) с первого-второго раза.

Но существуют более простые методики.
Читать дальше →

Разбираемся в АА-деревьях (Python)

Уровень сложностиСложный
Время на прочтение7 мин
Охват и читатели8.1K

АА-дерево - это модификация красно-черного дерева с целью упрощения реализации

Как его реализовать и как оно работает на конкретных примерах - вот о чем эта статья

Читать далее

Создание генетического алгоритма для нейросети и нейроcети для графических игр и видеоигр с помощью Python и NumPy

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели8.6K

Привет, Хабр!

Сегодня я расскажу и покажу, как сделать Genetic Algorithm(GA) для нейросети, чтобы с помощью него она смогла проходить разные игры. Я его испробовал на игре Pong и Flappy bird. Он себя показал очень хорошо. Советую прочитать, если вы не читали первую статью: "Создание простого и работоспособного генетического алгоритма для нейросети с Python и NumPy" , так как я доработал свой код который, был показан в той статье.

Я разделил код на две скрипта, в одной нейросеть играет в какую-то игру, в другой обучается и принимает решения(сам генетический алгоритм). Код с игрой представляет из себя функцию которая возвращает фитнес функцию (она нужна для сортировки нейросетей, например, сколько времени она продержалась, сколько очков заработала и т.п.). Поэтому код с играми(их две) будет в конце статьи. Генетический алгоритм для нейросети для игры Pong и игры Flappy Bird различаются лишь параметрами.

Используя скрипт, который я написал и описал в предыдущей статье, я создал сильно изменённый код генетического алгоритма для игры Pong, который я и буду описывать больше всего, так как именно на него я опирался, когда я уже создавал GA для Flappy Bird.

Вначале нам потребуется импортировать модули, списки и переменные:

Читать далее

Метод главных компонент (PCA). Принцип работы и реализация с нуля на Python

Уровень сложностиСложный
Время на прочтение8 мин
Охват и читатели51K

Метод главных компонент (Principal Component Analysis или же PCA) — алгоритм обучения без учителя, используемый для понижения размерности и выявления наиболее информативных признаков в данных. Его суть заключается в предположении о линейности отношений данных и их проекции на подпространство ортогональных векторов, в которых дисперсия будет максимальной.

Такие вектора называются главными компонентами и они определяют направления наибольшей изменчивости (информативности) данных. Альтернативно суть PCA можно определить как линейное проецирование, минимизирующее среднеквадратичное расстояние между исходными точками и их проекциями.

Читать далее

Вклад авторов