Все потоки
Поиск
Написать публикацию
Обновить
176.86

Алгоритмы *

Все об алгоритмах

Сначала показывать
Порог рейтинга
Уровень сложности

Открытый курс машинного обучения. Тема 10. Градиентный бустинг

Время на прочтение18 мин
Количество просмотров320K

Всем привет! Настало время пополнить наш с вами алгоритмический арсенал.


Сегодня мы основательно разберем один из наиболее популярных и применяемых на практике алгоритмов машинного обучения — градиентный бустинг. О том, откуда у бустинга растут корни и что на самом деле творится под капотом алгоритма — в нашем красочном путешествии в мир бустинга под катом.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →

CRISP-DM: проверенная методология для Data Scientist-ов

Время на прочтение16 мин
Количество просмотров82K
Постановка задач машинного обучения математически очень проста. Любая задача  классификации, регрессии или кластеризации – это по сути обычная оптимизационная задача с ограничениями. Несмотря на это, существующее многообразие алгоритмов и методов их решения делает профессию аналитика данных одной из наиболее творческих IT-профессий. Чтобы решение задачи не превратилось в бесконечный поиск «золотого» решения, а было прогнозируемым процессом, необходимо придерживаться довольно четкой последовательности действий. Эту последовательность действий описывают такие методологии, как CRISP-DM.

Методология анализа данных CRISP-DM упоминается во многих постах на Хабре, но я не смог найти ее подробных русскоязычных описаний и решил своей статьей восполнить этот пробел. В основе моего материала – оригинальное описание и адаптированное описание от IBM. Обзорную лекцию о преимуществах использования CRISP-DM можно посмотреть, например, здесь.


* Crisp (англ.) — хрустящий картофель, чипсы
Читать дальше →

Игры, в которых нужно писать код: Grid Garden, Elevator Saga и другие

Время на прочтение3 мин
Количество просмотров144K

В детстве мы постигаем премудрости жизни через игру. Это важнейший элемент развития личности, социальных навыков, получения знаний об окружающем мире. Игры — хороший «контейнер» для донесения и закрепления каких-либо знаний. Яркий пример — игры, в которых нужно писать код. Наверняка все вы о них слышали, а в некоторые даже играли. Их первичная задача — развлечь людей, уже владеющих навыками программирования, но они могут использоваться и для обучения. Эти игры помогут освежить свои знания по тому или иному языку, отвлечься и заняться более простой алгоритмической задачей.

Где на дороге деньги лежат (алгоритм, позволяющий в полтора раза сократить издержки в такси)

Время на прочтение10 мин
Количество просмотров35K


Наверное, сейчас очень мало людей, которым ни разу не приходилось пользоваться услугами такси, тем более, что последнее время популярность этого вида транспорта растет, а цена неуклонно падает. На личном опыте могу сказать, что это удобный способ, например, съездить с маленьким ребенком в поликлинику.


А Вы когда-нибудь задумывались, за что мы платим, пользуясь такси?


Без сомнения, основную часть составляет плата за время водителя и издержки на автомобиль, однако было бы довольно опрометчиво считать, что эта плата распространяется только на то время, пока Вы в пути. Кода таксисту приходится долго ждать очередного заказа, кто заплатит за его время и простой машины? — в конечном итоге мы с вами. Таксист по праву не согласится на вознаграждение за день ниже его стоимости на трудовом рынке, выполняй он при этом в среднем пять заказов или двадцать пять. Мне стало интересно, каково время не выгодного никому простоя и как его можно уменьшить. Ниже я хотел бы поделиться с вами результатами собственного исследования этого вопроса.

Читать дальше →

Корректирующие коды «на пальцах»

Время на прочтение11 мин
Количество просмотров78K

Корректирующие (или помехоустойчивые) коды — это коды, которые могут обнаружить и, если повезёт, исправить ошибки, возникшие при передаче данных. Даже если вы ничего не слышали о них, то наверняка встречали аббревиатуру CRC в списке файлов в ZIP-архиве или даже надпись ECC на планке памяти. А кто-то, может быть, задумывался, как так получается, что если поцарапать DVD-диск, то данные всё равно считываются без ошибок. Конечно, если царапина не в сантиметр толщиной и не разрезала диск пополам.


Как нетрудно догадаться, ко всему этому причастны корректирующие коды. Собственно, ECC так и расшифровывается — «error-correcting code», то есть «код, исправляющий ошибки». А CRC — это один из алгоритмов, обнаруживающих ошибки в данных. Исправить он их не может, но часто это и не требуется.


Давайте же разберёмся, что это такое.


Для понимания статьи не нужны никакие специальные знания. Достаточно лишь понимать, что такое вектор и матрица, как они перемножаются и как с их помощью записать систему линейных уравнений.


Внимание! Много текста и мало картинок. Я постарался всё объяснить, но без карандаша и бумаги текст может показаться немного запутанным.

Читать дальше →

Открытый курс машинного обучения. Тема 9. Анализ временных рядов с помощью Python

Время на прочтение27 мин
Количество просмотров379K

Доброго дня! Мы продолжаем наш цикл статей открытого курса по машинному обучению и сегодня поговорим о временных рядах.


Посмотрим на то, как с ними работать в Python, какие возможные методы и модели можно использовать для прогнозирования; что такое двойное и тройное экспоненциальное взвешивание; что делать, если стационарность — это не про вас; как построить SARIMA и не умереть; и как прогнозировать xgboost-ом. И всё это будем применять к примеру из суровой реальности.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →

Введение в криптографию и шифрование, часть первая. Лекция в Яндексе

Время на прочтение20 мин
Количество просмотров264K
Чтобы сходу понимать материалы об инфраструктуре открытых ключей, сетевой безопасности и HTTPS, нужно знать основы криптографической теории. Один из самых быстрых способов изучить их — посмотреть или прочитать лекцию Владимира ivlad Иванова. Владимир — известный специалист по сетям и системам их защиты. Он долгое время работал в Яндексе, был одним из руководителей нашего департамента эксплуатации.


Мы впервые публикуем эту лекцию вместе с расшифровкой. Начнём с первой части. Под катом вы найдёте текст и часть слайдов.

Псевдотонирование изображений: одиннадцать алгоритмов и исходники

Время на прочтение12 мин
Количество просмотров30K

Псевдотонирование: обзор



Про сегодняшнюю тему для программирования графики — псевдотонирование (дизеринг, псевдосмешение цветов) — я получаю много писем, что может показаться удивительным. Вы можете подумать, что псевдотонирование — это не то, чем программисты должны заниматься в 2012 году. Разве псевдосмешение — не артефакт история технологий, архаизм времён, когда дисплей с 16 миллионами цветов программистам и пользователям мог только сниться? Почему я пишу статью о псевдотонировании в эпоху, когда дешевые мобильные телефоны работают с великолепием 32-битной графики?

На самом деле псевдотонирование по-прежнему остаётся уникальным методом не только по практическим соображениям (например, подготовка полноцветного изображения для печати на чёрно-белом принтере), но и по художественным. Дизеринг также находит применение в веб-дизайне, где этот полезный метод используется для сокращения числа цветов изображения, что уменьшает размер файла (и трафик) без ущерба для качества. Он также используется при уменьшении цифровых фотографий в формате RAW в 48 или 64 бита на пиксель до RGB в 24 бита на пиксель для редактирования.

И это — применения лишь в области изображений. В звуке дизеринг тоже играет ключевую роль, но боюсь, обсуждать здесь дизеринг аудио я не буду. Только псевдотонирование изображений.
Читать дальше →

Алгоритм Джонкера-Волгенанта + t-SNE = супер-сила

Время на прочтение9 мин
Количество просмотров32K
До:



После:



Заинтригованы? Но обо всем по порядку.

t-SNE


t-SNE — это очень популярный алгоритм, который позволяет снижать размерность ваших данных, чтобы их было проще визуализировать. Этот алгоритм может свернуть сотни измерений к всего двум, сохраняя при этом важные отношения между данными: чем ближе объекты располагаются в исходном пространстве, тем меньше расстояние между этими объектами в пространстве сокращенной размерности. t-SNE неплохо работает на маленьких и средних реальных наборах данных и не требует большого количества настроек гиперпараметров. Другими словами, если взять 100 000 точек и пропустить их через эту волшебный черный ящик, на выходе мы получим красивый график рассеяния.
Читать дальше →

Реализация псевдо-3D в гоночных играх

Время на прочтение40 мин
Количество просмотров52K

Введение


Почему псевдо-3d?

Зачем кому-то захочется создавать дороги в олдскульном стиле сегодня, когда каждый компьютер может на лету отрисовывать графику, состоящую из миллионов полигонов? Разве полигоны — не то же самое, только лучше? На самом деле нет. Полигоны действительно создают меньше искажений, но именно деформации в старых игровых движках дают такое сюрреалистическое, головокружительное чувство скорости, ощущаемое во многих дополигональных играх. Представьте, что область видимости управляется камерой. При движении по кривой в игре, использующей один из таких движков, похоже, что она заглядывает на кривую. Затем, когда дорога становится прямой, вид тоже выпрямляется. При движении в повороте с плохим обзором камера как будто заглядывает за выступ. И поскольку в таких играх не используется традиционный формат трасс с точными пространственными соотношениями, то можно без проблем создавать трассы, на которых игрок будет ездить с захватывающей дух скоростью. При этом не нужно беспокоиться о том, что объекты появляются на трассе быстрее, чем может среагировать игрок, потому что физическую реальность игры можно легко изменять в соответствии со стилем геймплея.

Но в такой системе есть и множество недостатков. Глубина физики, используемой в играх-симуляторах, будет утеряна, поэтому такие движки не приспособлены для этих игр. Однако они просты в реализации, быстро работают, а игры на их основе обычно очень интересны!

Стоит заметить, что не в каждой старой гоночной игре используются эти техники. В действительности описываемый в статье метод — это только один из способов создания псевдотрёхмерной дороги. В других случаях используются спроецированные и отмасштабированные спрайты или различные способы реального проецирования дороги. Степень смешения реальной математики с трюками зависит от создателей. Надеюсь, вам понравится изучение предложенного мной спецэффекта.

M* — алгоритм поиска кратчайшего пути, через весь мир, на смартфоне

Время на прочтение13 мин
Количество просмотров47K


При поиске кратчайшего пути на графах большого размера плохо работает традиционная оценка стоимости т.к. данные заведомо не помещаются в памяти и общая стоимость больше зависит от числа обращений к диску нежели от числа просмотренных рёбер. А число дисковых операций — весьма субъективный фактор, зависимый от сложно формализуемой пригодности графа к хранению на диске в форме удобной для конкретного алгоритма. Кроме того, очень важным становится компактность — количество информации в расчете на ребро и вершину.

Под катом представлена обобщенная эвристика к алгоритму A*, полезная именно в свете практической пригодности на больших графах при ограниченных ресурсах, например, на мобилке.
Читать дальше →

Открытый курс машинного обучения. Тема 7. Обучение без учителя: PCA и кластеризация

Время на прочтение19 мин
Количество просмотров213K

Привет всем! Приглашаем изучить седьмую тему нашего открытого курса машинного обучения!


Данное занятие мы посвятим методам обучения без учителя (unsupervised learning), в частности методу главных компонент (PCA — principal component analysis) и кластеризации. Вы узнаете, зачем снижать размерность в данных, как это делать и какие есть способы группирования схожих наблюдений в данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →

Kaggle: Британские спутниковые снимки. Как мы взяли третье место

Время на прочтение22 мин
Количество просмотров42K

Сразу оговорюсь, что данный текст — это не сухая выжимка основных идей с красивыми графиками и обилием технических терминов (такой текст называется научной статьей и я его обязательно напишу, но потом, когда нам заплатят призовые $20000, а то, не дай бог, начнутся разговоры про лицензию, авторские права и прочее.) (UPD: https://arxiv.org/abs/1706.06169). К моему сожалению, пока устаканиваются все детали, мы не можем поделиться кодом, который написали под эту задачу, так как хотим получить деньги. Как всё утрясётся — обязательно займемся этим вопросом. (UPD: https://github.com/ternaus/kaggle_dstl_submission)

Так вот, данный текст — это скорее байки по мотивам, в которых, с одной стороны, всё — правда, а с другой, обилие лирических отступлений и прочей отсебятины не позволяет рассматривать его как что-то наукоемкое, а скорее просто как полезное и увлекательное чтиво, цель которого показать, как может происходить процесс работы над задачами в дисциплине соревновательного машинного обучения. Кроме того, в тексте достаточно много лексикона, который специфичен для Kaggle и что-то я буду по ходу объяснять, а что-то оставлю так, например, вопрос про гусей раскрыт не будет.

Ближайшие события

Нейронные сети в борьбе с раком

Время на прочтение7 мин
Количество просмотров15K

image


В прошлом году мы с Артуром Кадуриным решили присоединиться к новой волне обучения нейронных сетей — к глубокому обучению. Сразу стало ясно, что машинное обучение во многих сферах практически не используется, а мы в свою очередь понимаем как его можно применить. Оставалось найти интересную область и сильных экспертов в ней. Так мы и познакомились с командой из Insilico Medicine (резидент БМТ-кластера фонда «Сколково») и разработчиками из МФТИ и решили вместе поработать над задачей поиска лекарств против рака.


Ниже вы прочитаете обзор статьи The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology, которую мы с коллегами из Insilico Medicine и МФТИ подготовили для американского журнала Oncotarget, с упором на реализацию предложенной модели во фреймворке tensorflow. Исходная задача была следующей. Есть данные вида: вещество, концентрация, показатель роста раковых клеток. Нужно сгенерировать новые вещества, которые останавливали бы рост опухоли при определенной концентрации. Датасет доступен на сайте NCI Wiki.

Читать дальше →

Второе почетное. Заметки участника конкурса Dstl Satellite Imagery Feature Detection

Время на прочтение9 мин
Количество просмотров15K


Недавно закончилось соревнование по машинному обучению Dstl Satellite Imagery Feature Detection в котором приняло участие аж трое сотрудников Avito. Я хочу поделиться опытом участия от своего лица и рассказать о решении.

Открытый курс машинного обучения. Тема 6. Построение и отбор признаков

Время на прочтение24 мин
Количество просмотров194K

Сообщество Open Data Science приветствует участников курса!


В рамках курса мы уже познакомились с несколькими ключевыми алгоритмами машинного обучения. Однако перед тем как переходить к более навороченным алгоритмам и подходам, хочется сделать шаг в сторону и поговорить о подготовке данных для обучения модели. Известный принцип garbage in – garbage out на 100% применим к любой задаче машинного обучения; любой опытный аналитик может вспомнить примеры из практики, когда простая модель, обученная на качественно подготовленных данных, показала себя лучше хитроумного ансамбля, построенного на недостаточно чистых данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.



Читать дальше →

Анализ исходного кода Quake

Время на прочтение17 мин
Количество просмотров46K
image

Я с удовольствием погрузился в изучение исходного кода Quake World и изложил в статье всё, что я понял. Надеюсь, это поможет желающим разобраться. Эта статья разделена на четыре части:

  • Архитектура
  • Сеть
  • Прогнозирование
  • Визуализация
Читать дальше →

Открытый курс машинного обучения. Тема 5. Композиции: бэггинг, случайный лес

Время на прочтение28 мин
Количество просмотров289K

Пятую статью курса мы посвятим простым методам композиции: бэггингу и случайному лесу. Вы узнаете, как можно получить распределение среднего по генеральной совокупности, если у нас есть информация только о небольшой ее части; посмотрим, как с помощью композиции алгоритмов уменьшить дисперсию и таким образом улучшить точность модели; разберём, что такое случайный лес, какие его параметры нужно «подкручивать» и как найти самый важный признак. Сконцентрируемся на практике, добавив «щепотку» математики.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).


Читать дальше →

Что приняли в C++17, фотография Бьярне Страуструпа и опрос для C++20

Время на прочтение4 мин
Количество просмотров53K

В начале марта в американском городе Кона завершилась встреча международной рабочей группы WG21 по стандартизации C++ в которой участвовали сотрудники Яндекса.
C++17 "приняли"!
Если быть совсем точным, решили, что пора передавать документ-черновик С++17 в вышестоящий орган ISO, который выпустит его в качестве стандарта, либо отправит обратно для исправления форматирования и некоторых других формальностей.

Заседания, как обычно, занимали целый день плюс дополнительно заседала подгруппа по работе с числами.

Основное время было посвящено полировке черновика C++17, но несколько небольших и интересных нововведений все же успели проскочить в C++17.
Подробности

Открытый курс машинного обучения. Тема 4. Линейные модели классификации и регрессии

Время на прочтение30 мин
Количество просмотров572K

Всем привет!


Сегодня мы детально обсудим очень важный класс моделей машинного обучения – линейных. Ключевое отличие нашей подачи материала от аналогичной в курсах эконометрики и статистики – это акцент на практическом применении линейных моделей в реальных задачах (хотя и математики тоже будет немало).


Пример такой задачи – это соревнование Kaggle Inclass по идентификации пользователя в Интернете по его последовательности переходов по сайтам.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Все материалы доступны на GitHub.
А вот видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017). В ней, в частности, рассмотрены два бенчмарка соревнования, полученные с помощью логистической регрессии.

Читать дальше →

Вклад авторов