Как стать автором
Поиск
Написать публикацию
Обновить
105.03

Big Data *

Большие данные и всё о них

Сначала показывать
Период
Уровень сложности

Распознавание дорожных знаков с помощью CNN: Spatial Transformer Networks

Время на прочтение11 мин
Количество просмотров17K
Привет, Хабр! Продолжаем серию материалов от выпускника нашей программы Deep Learning, Кирилла Данилюка, об использовании сверточных нейронных сетей для распознавания образов — CNN (Convolutional Neural Networks).

В прошлом посте мы начали разговор о подготовке данных для обучения сверточной сети. Сейчас же настало время использовать полученные данные и попробовать построить на них нейросетевой классификатор дорожных знаков. Именно этим мы и займемся в этой статье, добавив дополнительно к сети-классификатору любопытный модуль — STN. Датасет мы используем тот же, что и раньше.

Spatial Transformer Network (STN) — один из примеров дифференцируемых LEGO-модулей, на основе которых можно строить и улучшать свою нейросеть. STN, применяя обучаемое аффинное преобразование с последующей интерполяцией, лишает изображения пространственной инвариантности. Грубо говоря, задача STN состоит в том, чтобы так повернуть или уменьшить-увеличить исходное изображение, чтобы основная сеть-классификатор смогла проще определить нужный объект. Блок STN может быть помещен в сверточную нейронную сеть (CNN), работая в ней по большей части самостоятельно, обучаясь на градиентах, приходящих от основной сети.

Весь исходный код проекта доступен на GitHub по ссылке. Оригинал этой статьи можно посмотреть на Medium.

Чтобы иметь базовое представление о работе STN, взгляните на 2 примера ниже:
Слева: исходное изображение. Справа: то же изображение, преобразованное STN. Spatial transformers распознают наиболее важную часть изображения и затем масштабируют или вращают его, чтобы сфокусироваться на этой части.
Читать дальше →

Книга «Основы Data Science и Big Data. Python и наука о данных»

Время на прочтение4 мин
Количество просмотров44K
imageData Science — это совокупность понятий и методов, позволяющих придать смысл и понятный вид огромным объемам данных.

Каждая из глав этой книги посвящена одному из самых интересных аспектов анализа и обработки данных. Вы начнете с теоретических основ, затем перейдете к алгоритмам машинного обучения, работе с огромными массивами данных, NoSQL, потоковым данным, глубокому анализу текстов и визуализации информации. В многочисленных практических примерах использованы сценарии Python.

Обработка и анализ данных — одна из самых горячих областей IT, где постоянно требуются разработчики, которым по плечу проекты любого уровня, от социальных сетей до обучаемых систем. Надеемся, книга станет отправной точкой для вашего путешествия в увлекательный мир Data Science.
Читать дальше →

MapReduce из подручных материалов. Часть II – базовые интерфейсы реализации

Время на прочтение9 мин
Количество просмотров5.5K

Take it like a man by Joan PollakВ предыдущей части серии мы (в 100500й раз) попытались рассказать про основные приемы и стадии подхода Google MapReduce, должен признаться, что первая часть была намерено "капитанской", чтобы дать знать о MapReduce целевой аудитории последующих статей. Мы не успели показать ни строчки того, как всё это мы собираемся реализовывать в Caché ObjectScript. И про это наша рассказ сегодня (и в последующие дни).


Напомним первоначальный посыл нашего мини-проекта: вы всё еще планируем реализовать MapReduce алгоритм используя те подручные средства, что есть в Caché ObjectScript. При создании интерфейсов, мы попытаемся придерживаться того API, что мы описали в предыдущей статье про оригинальную реализацию Google MapReduce, любые девиации будут озвучены соответствующе.


Читать дальше →

Batch Normalization для ускорения обучения нейронных сетей

Время на прочтение5 мин
Количество просмотров77K

В современном мире нейронные сети находят себе всё больше применений в различных областях науки и бизнеса. Причем чем сложнее задача, тем более сложной получается нейросеть.


Обучение сложных нейронных сетей иногда может занимать дни и недели только для одной конфигурации. А чтобы подобрать оптимальную конфигурацию для конкретной задачи, требуется запустить обучение несколько раз — это может занять месяцы вычислений даже на действительно мощной машине.


В какой-то момент, знакомясь с представленным в 2015 году методом Batch Normalization от компании Google мне, для решения задачи связанной с распознаванием лиц, удалось существенно улучшить скорость работы нейросети.



За подробностями прошу под кат.

Читать дальше →

Flume — управляем потоками данных. Часть 3

Время на прочтение12 мин
Количество просмотров13K
Привет, Хабр! После долгой паузы мы наконец-то возвращаемся к разбору Apache Flume. В предыдущих статьях мы познакомились с Flume (Часть 1) и разобрались, как настраивать основные его компоненты (Часть 2). В этой, заключительной, части цикла мы рассмотрим следующие вопросы:

  • Как настроить мониторинг компонентов узла.
  • Как написать собственную реализацию компонента Flume.
  • Проектирование полноценной транспортной сети.

Читать дальше →

Palantir и отмывание денег

Время на прочтение6 мин
Количество просмотров37K


Palantir
[Контент удален по требованию Википедии]

На официальном канале Palantir есть видео с демонстрацией работы аналитика, использующего систему Palantir в ходе расследования отмывания денег. По-моему, как-то так видели пользу информационных технологий «отцы-основатели» Вэнивар Буш («As We May Think»), Дуглас Энгельбарт («The Mother of All Demos») и Джозеф Ликлайдер («Интергалактическая компьютерная сеть» и «Симбиоз человека и компьютера»), о которых я писал немного ранее.

(За помощь с переводом спасибо Ворсину Алексею)

HighLoad++ — это блюдо, которое подают высоконагруженным

Время на прочтение6 мин
Количество просмотров21K


Пожалуй главным отличием конференции разработчиков высоконагруженных систем HighLoad++ от многих других является отсутствие скрытых целей. За нами не стоит ни одного лица или организации, которая бы навязывала правила игры или занималась хантингом на мероприятии, типа:
  • Крупной компании
  • Толстосума-спонсора
  • Государственных структур

Уже долгие годы HighLoad++ остается событием, которое одни разработчики организуют для других разработчиков.

Девять лет назад мы приняли для себя несколько строгих правил, которым стараемся неукоснительно следовать. Не будем перечислять их все — для этого еще придёт время, назовем лишь основные.
Читать дальше →

MCMC и байесова статистика в BASIC

Время на прочтение5 мин
Количество просмотров14K
BASIC был одним из самых распространенных языков программирования. В 80-х он шел в стандартном наборе программ на компьютере (например, Commodore 64 и Apple II), а в 90х и DOS и Windows 95 включали в себя QBasic IDE.

QBasic был также моим первым языком программирования. Я не программировал на Бейсике уже почти 20 лет и решил вспомнить этот действительно странный язык. Поскольку я провел много времени за байесовскими алгоритмами, я подумал, что будет интересно увидеть как байесовская аналитика будет выглядеть в утилите 20-летней давности.

image
Читать дальше →

Анализ данных на Scala. Считаем корреляцию 21-го века

Время на прочтение8 мин
Количество просмотров22K

Очень важно выбрать правильный инструмент для анализа данных. На форумах Kaggle.com, где проводятся международные соревнования по Data Science, часто спрашивают, какой инструмент лучше. Первые строчки популярноcти занимают R и Python. В статье мы расскажем про альтернативный стек технологий анализа данных, сделанный на основе языка программирования Scala и платформы распределенных вычислений Spark.

Как мы пришли к этому? В Retail Rocket мы много занимаемся машинным обучением на очень больших массивах данных. Раньше для разработки прототипов мы использовали связку IPython + Pyhs2 (hive драйвер для Python) + Pandas + Sklearn. В конце лета 2014 года приняли принципиальное решение перейти на Spark, так как эксперименты показали, что мы получим 3-4 кратное повышение производительности на том же парке серверов.
Подробности

Обзор наиболее интересных материалов по анализу данных и машинному обучению №38 (2 — 8 марта 2015)

Время на прочтение3 мин
Количество просмотров9K

Представляю вашему вниманию очередной выпуск обзора наиболее интересных материалов, посвященных теме анализа данных и машинного обучения.
Читать дальше →

Apache Spark: что там под капотом?

Время на прочтение5 мин
Количество просмотров52K

Вступление


В последнее время проект Apache Spark привлекает к себе огромное внимание, про него написано большое количество маленьких практических статей, он стал частью Hadoop 2.0. Плюс он быстро оброс дополнительными фреймворками, такими, как Spark Streaming, SparkML, Spark SQL, GraphX, а кроме этих «официальных» фреймворков появилось море проектов — различные коннекторы, алгоритмы, библиотеки и так далее. Достаточно быстро и уверенно разобраться в этом зоопарке при отсутсвие серьезной документации, особенно учитывая факт того, что Spark содержит всякие базовые кусочки других проектов Беркли (например BlinkDB) — дело непростое. Поэтому решил написать эту статью, чтобы немножко облегчить жизнь занятым людям.
Читать дальше →

Как начать работу в Kaggle: руководство для новичков в Data Science

Время на прочтение4 мин
Количество просмотров147K
Доброго времени суток, уважаемые хабровчане! Сегодня я хотел бы поговорить о том, как не имея особого опыта в машинном обучении, можно попробовать свои силы в соревнованиях, проводимых Kaggle.

image

Как вам уже, наверное, известно, Kaggle – это платформа для исследователей разных уровней, где они могут опробовать свои модели анализа данных на серьезных и актуальных задачах. Суть такого ресурса – не только в возможности получить неплохой денежный приз в случае, если именно ваша модель окажется лучшей, но и в том (а, это, пожалуй, гораздо важнее), чтобы набраться опыта и стать специалистом в области анализа данных и машинного обучения. Ведь самый важный вопрос, зачастую стоящий перед такого рода специалистами – где найти реальные задачи? Здесь их достаточно.

Мы попробуем поучаствовать в обучающем соревновании, не предусматривающем каких-либо поощрений, кроме опыта.
Читать дальше →

Как узнать больше о ваших пользователях? Применение Data Mining в Рейтинге Mail.Ru

Время на прочтение8 мин
Количество просмотров20K


Любой интернет-проект можно сделать лучше. Реализовать новые фичи, добавить серверов, переделать интерфейс или выпустить новую версию API. Вашим пользователям это понравится. Или нет? И вообще, что это за люди? Молодые или в возрасте? Обеспеченные или скорее наоборот? Из Москвы? Питера? Сан-Франциско, штат Калифорния? И почему, в конце концов, те сто теплых пледов, что вы закупили еще в мае, пылятся на складе, а футболки с октокотами расходятся, как горячие пирожки? Получить ответы поможет проект Рейтинг Mail.Ru. Эта статья о том, как мы применяем data mining, чтобы ответить на самые сложные вопросы.
Читать дальше →

Ближайшие события

Обзор наиболее интересных материалов по анализу данных и машинному обучению №19 (20 — 26 октября 2014)

Время на прочтение5 мин
Количество просмотров14K

Представляю вашему вниманию очередной выпуск обзора наиболее интересных материалов, посвященных теме анализа данных и машинного обучения.
Читать дальше →

Обзор наиболее интересных материалов по анализу данных и машинному обучению №17 (6 — 12 октября 2014)

Время на прочтение5 мин
Количество просмотров12K

Представляю вашему вниманию очередной выпуск обзора наиболее интересных материалов, посвященных теме анализа данных и машинного обучения.
Читать дальше →

Обзор наиболее интересных материалов по высокой производительности (15 — 21 сентября 2014)

Время на прочтение4 мин
Количество просмотров13K

Представляю вашему вниманию первый выпуск обзора наиболее интересных материалов по высокой производительности. Когда я готовил очередной выпуск обзора наиболее интересных материалов по анализу данных и машинному обучению, то понял, что выделяется вполне себе самодостаточная тематика собранных материалов. Надеюсь, что данный тип обзоров будет тоже полезен и интересен. Буду стараться расширять список ресурсов за которыми слежу при подготовке данных обзоров.
Читать дальше →

Обзор наиболее интересных материалов по анализу данных и машинному обучению №10 (18 — 25 августа 2014)

Время на прочтение5 мин
Количество просмотров9.4K

Представляю вашему вниманию очередной выпуск обзора наиболее интересных материалов, посвященных теме анализа данных и машинного обучения. В данном выпуске достаточно много интересных материалов для новичков. Присутствует пара интересных видеоматериалов. Есть материалы по теме Data Engineering. Как обычно некоторые количество статей посвящено примерам кода, связанного с анализом данных и машинным обучением. И уже традиционно несколько статей посвящено теме участия в соревнованиях по машинному обучению.

Читать дальше →

Обзор наиболее интересных материалов по анализу данных и машинному обучению №1 (9 — 16 июня 2014)

Время на прочтение3 мин
Количество просмотров17K

Данный выпуск дайджеста наиболее интересных материалов, посвященных теме анализа данных содержит достаточно много статей, которые рассматривают теоретические аспекты вопросов, связанных с Data Science. Есть несколько статей, которые будут интересны новичкам. Также представлены ссылки на серию интересных статей о работе со схемами данных в MongoDb. Есть несколько ссылок на материалы, в которых рассматривается важная проблема переобучения (overfitting) в процессе машинного обучения. Некоторые статьи посвящены литературе, рекомендуемой к прочтению для тех кому интересна тема анализа данных.
Читать дальше →

Hive vs Pig. На что мне столько ETL?

Время на прочтение8 мин
Количество просмотров20K
image

Лучше день потерять, но потом за пять минут долететь (с)



Привет коллеги.
Хочу поделиться с вами соображениями о том, чем отличаются фреймворки Hive и Pig, входящие в экосистему Hadoop. По сути, это два очень похожих продукта, цель у которых одна — взять на себя всю техническую реализацию MapReduce, предоставив взамен возможность описывать процесс обработки данных на более абстрактном уровне. В этой статье мы увидим как выглядят выборки в этих двух системах, и попытаемся понять, в каких случаях надо использовать то или иное решение.
Читать дальше →

Единый интерфейс управления рекламой на сайте

Время на прочтение4 мин
Количество просмотров19K
Монетизация собственного проекта – всегда вызов. Самый простой вариант: поставить на него тизерную рекламу или контекст, и наблюдать, сколько денег капает в карман. Но этот же вариант часто оказывается разочаровывающим – заработок не стоит усилий по его приобретению. Так ли плоха тизерная/контекстная реклама для монетизации сайтов? Скорее всего, вы просто не умеете её готовить.


В зависимости характера вашего трафика, его источников и состава, будет меняться прибыльность той или иной рекламной сети
Читать дальше →

Вклад авторов