Обновить
60.52

Data Engineering *

Обсуждаем вопросы сбора и подготовки данных

Сначала показывать
Порог рейтинга
Уровень сложности

Управление техническим состоянием объектов путевой инфраструктуры с применением информационных технологий

Уровень сложностиСредний
Время на прочтение23 мин
Охват и читатели8.2K

Эта статья была написана мной и опубликована в отраслевом научном журнале более четверти века назад, когда я работал в головном НИИ железнодорожной отрасли (ВНИИЖТ МПС) в должности заместителя заведующего лабораторией и занимался вопросами научно-методического обеспечения задач управления производственными процессами путевого хозяйства железных дорог России, автоматизацией функций и применением информационных технологий для нужд путевого хозяйства.

В статье рассматриваются вопросы управления техническим состоянием объектов путевого хозяйства с применением информационных технологий.

Читать статью

Data Quality в масштабе Big Data: как мы построили систему контроля качества данных в Hadoop

Время на прочтение9 мин
Охват и читатели9.5K

Качество данных — это не просто вопрос наличия значений в столбцах таблиц. Это вопрос доверия к данным в целом. Мы можем создавать сложные системы отчётности, но если на каком-то этапе ETL в данных возникают пропуски, дубликаты или они не соответствуют ожиданиям, вся система теряет доверие потребителей. В результате приходится тратить много времени на поиск и устранение причин таких проблем.

Читать далее

Выбираем open-source эмбеддинг-модель для AI-консультанта на русском (RAG-подход)

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели9.1K

Разрабатывая AI-консультантов и ассистентов на базе RAG-архитектуры, работающих с корпоративными базами знаний на русском языке, мы столкнулись с вопросом: какие открытые эмбеддинг-модели дают лучший баланс качества семантического поиска на русском и скорости работы. Особенно это актуально, когда запросы и документы русскоязычные, но внутри часто попадаются фрагменты кода/SQL и англоязычной терминологии.

Мы прогнали 9 open-source эмбеддинг-моделей через несколько тестов, включающих проверки:

Читать далее

Анализ EEG-датасетов с Kaggle: от сигнала до ML-модели

Уровень сложностиПростой
Время на прочтение7 мин
Охват и читатели8.6K

Электроэнцефалография (ЭЭГ) — это неинвазивный метод регистрации электрической активности мозга через электроды на поверхности головы. За последние годы ЭЭГ-данные перестали быть исключительно медицинской прерогативой и прочно вошли в мир data science. Сегодня их используют в нейромаркетинге для оценки реакций на рекламу, в когнитивных исследованиях для измерения внимания и памяти, в разработке Brain-Computer Interface (BCI) и даже в спортивной аналитике.

Читать далее

Ставка на GenAI: генеративные модели меняют правила игры в автономном транспорте

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели5K

Автономный транспорт давно вышел за пределы закрытых полигонов и футуристичных историй. Он уже работает и приносит пользу бизнесу и людям. В России тягачи Navio два года возят реальные грузы коммерческих клиентов по трассе М-11 «Нева». А в США, Китае или Европе можно совершить поездку на роботакси. Тем не менее, восприятие технологии остается противоречивым. Видео, где автомобиль без водителя в салоне не может выехать с кольцевого перекрестка или воспринимает человека в майке с надписью STOP как команду к действию, усиливают скепсис и снижают доверие к результатам разработчиков. Почему компании, которые работают над технологией с 2009 года [больше 15 лет], не смогли добиться ее стабильной работы.

Классический подход в разработке автономного транспорта

Алгоритмический подход признан классическим в разработке автономного транспорта. Логическая архитектура построена на основе последовательности действий водителя за рулем:

восприятие окружающего мира — набор сенсоров (радары, лидары, камеры);

определение местоположения — карты, модуль позиционирования, сенсоры;

предсказывание действий других объектов вокруг — алгоритмы на базе кинематической составляющей и модели динамики объектов;

планирования пути — руководство к действию или свод правил, основанный на правилах дорожного движения (ПДД);

управление — модуль внутри автомобиля приводит его в движение. 

Этот код пишется 15 лет и никогда не будет завершен 

Несовершенность классического подхода обнаружилась на этапе планирования пути. При алгоритмическом подходе условия прописываются вручную (what-if сценарии). Автономное транспортное средство принимает решение на основе типа объекта (автомобиль, пешеход, др.), дальше добавляются такие условия, как состояние дорожного покрытия, погода, светофоры, другие объекты. Все это ведет к экспоненциальному росту проверок вложенных условий. Обладая достаточным парком автомобилей, за несколько лет разработчик может закрыть самые часто встречающиеся сценарии на дороге. Следующие несколько лет проездов выловят более редкие случаи и укрепят базу. Но остается открытым вопрос, что делать с уникальными ситуациями, как человек в футболке с надписью STOP или объездом препятствия в месте, где обгон запрещен разметкой. Невозможно вручную прописать все условия заранее, мир сегодня слишком непредсказуем. Такой подход не позволит масштабировать технологию и обеспечить ее стабильность на 100%, особенно в условиях города. Такая бесконечность сценариев называется Long Tail.

Читать далее

StarRocks Lakehouse: быстрый старт — Apache Paimon

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели5.2K

Практический гид по быстрому запуску StarRocks Lakehouse с Apache Paimon. Вы узнаете, как построить единую пакетную и потоковую обработку (batch/stream) на базе ACID-хранилища с поддержкой schema evolution и Time Travel, разберетесь в моделях таблиц (Primary Key, Append, Append Queue) и стратегиях compaction. Пошагово настроим Flink, Kafka, Paimon и StarRocks, создадим топик и генератор данных, соберем Flink SQL‑пайплайн и выполним запросы из StarRocks, включая Read-Optimized и инкрементальное чтение.

Читать далее

DataHub не заменил наш самописный дата-каталог — и это нормально. Оптимизируем работу с метаданными

Время на прочтение9 мин
Охват и читатели5.9K

В Островке мы строим экосистему вокруг данных — от хранилищ и пайплайнов до систем мониторинга и каталогов. Но когда всё только начиналось, под часть наших процессов просто не существовало готовых решений. Так появился наш собственный дата-каталог DataPortal — лёгкий, быстрый и идеально подходящий для небольшой компании.

Со временем всё изменилось: объём данных вырос в десятки раз, появились новые команды, и вместе с этим начали звучать вопросы вроде «где лежат данные для этого дашборда?», «кому писать, если он упал?» и «можно ли этим данным доверять?». Так мы поняли, что пора взрослеть — и искать инструмент, который поможет масштабировать не только инфраструктуру, но и дата-культуру.

Мы выбрали DataHub — open-source каталог, обещавший прозрачность, автоматизацию и гибкость. Развернули, подключили источники, построили lineage, и даже порадовались, что всё заработало с первого раза. А потом стало ясно: DataHub не заменил наш DataPortal. Более того, оба инструмента отлично дополнили друг друга — инженерное ядро и удобное окно в данные для бизнеса.

Почему два дата-каталога оказались лучше одного, как это повлияло на культуру работы с данными и что нам дал DataHub помимо красивых графов lineage — рассказываем под катом.

Читать далее

Уровни изоляции транзакций: практическая механика и сравнение PostgreSQL, MySQL, Oracle, SQL Server и DB2

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели9.3K

Транзакции — не про «магическое ACID», а про конкретную механику согласованного доступа к данным под нагрузкой.

Эта статья объясняет как реально работают уровни изоляции и чем отличаются популярные СУБД на практике.

Мы разберём:

Читать далее

Книга: «Потоковые базы данных»

Время на прочтение2 мин
Охват и читатели12K

Привет, Хаброжители! В наши дни приложения реального времени стали нормой. Но для построения корректно работающей модели требуется, чтобы данные обрабатывались на лету и анализировались с низкой задержкой. Из этой практической книги инженеры, архитекторы и аналитики данных узнают, как использовать потоковые базы данных для создания решений, действующих в режиме реального времени.

Читать далее

Построение E2E-решения для прогнозирования временных рядов на примере метеоданных

Уровень сложностиСредний
Время на прочтение13 мин
Охват и читатели8.1K

Привет, Хабр!

Четыре года назад, еще в институте, одним из моих первых серьезных проектов была простая LSTM-модель для прогноза погоды. Недавно, пересматривая старые наработки, я задался вопросом: насколько дальше можно зайти, применив накопленный за эти годы опыт и современные инженерные практики?

Эта статья — история такого "рефакторинга длиною в 4 года". Это рассказ о том, как простой академический проект был переосмыслен и превращен в полноценное End-to-End (E2E) решение. Цель — не просто снова предсказать погоду, а на практическом примере продемонстрировать системный подход к построению ML-пайплайна с нуля.

В статье рассматриваются все ключевые этапы: от разработки отказоустойчивого веб-скрапера до проведения сравнительного анализа трех разнородных моделей прогнозирования:

Читать далее

dbt 101: что нужно знать на старте и лучшие практики

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели8K

dbt — это фреймворк для трансформации данных внутри хранилища и отличный инструмент для аналитиков и дата-инженеров на больших проектах, где число SQL-скриптов может переваливать за сотни. Мы с командой много работаем с dbt, и в этой статье хочу поделиться своим опытом: расскажу о его ключевых элементах и некоторых лучших практиках на примере одного кейса.

Это не гайд, как развернуть dbt и создать проект, а знакомство с тулом для тех, кто пока с ним не работал и хочет разобраться, что это вообще такое.

Читать далее

Импорт, преобразование и оптимизация — одним конвейером SQL

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели5.4K

Импорт терабайтов из S3 одним SQL: INSERT FROM FILES и PIPE. Партиционирование через date_trunc(), RANDOM‑бакетизация, трансформации с JOIN/UNNEST и гибкий ALTER TABLE.

Читать далее

Больше чем просто данные в S3. Iceberg как основа архитектуры Next-Gen КХД

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели9.6K

Традиционные форматы хранения данных постепенно перестают удовлетворять требованиям современных распределенных вычислений и аналитики больших данных. Каскадные обновления метаданных, проблемы консистентности и высокая стоимость поддержки вынуждают искать альтернативы. Ответом на запросы стало появление формата Iceberg, который предложил новую парадигму организации структурированных данных, позволяющую эффективно управлять петабайтами информации даже в распределенных средах. 

Привет, Хабр. Меня зовут Алексей Белозерский. Я руководитель профессионального сервиса VK Data Platform, VK Tech. В этой статье я расскажу, что стало предпосылкой появления нового формата данных и что скрывает Iceberg «под толщей воды».

Читать далее

Ближайшие события

Тестирование движков массивно-параллельных вычислений: StarRocks, Trino, Spark. Spark – с DataFusion Comet и Impala

Время на прочтение7 мин
Охват и читатели6.6K

В сегодняшней, уже третьей по счету, публикации я продолжу делится результатами нагрузочных испытаний вычислительных технологий массивных параллельных вычислений (на Habr уже представлены мои материалы, посвященные сравнению Impala, Trino и Greenplum, в том числе по методике TPC-DS). В этот раз в список решений добавляется Spark, включая работающий с технологией нативных вычислений DataFusion Comet, и набирающий популярность StarRocks.

Читать далее

Модель данных для успешного бизнеса: от простоты к компромиссам

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели5.9K

История моделей данных  — это не строгое следование хронологии, а путь нарастания сложности для решения всё более трудных задач. Чтобы понять, почему появились сложные модели, нужно начать с самой простой и интуитивно понятной из них. Это проведет нас от базовых структур к комплексным, позволит осознанно выбирать инструмент, понимая все предпосылки и компромиссы.

«Широкие» таблицы

Путь поиска баланса между простотой, производительностью и гибкостью начинался с «широких» (их также называют «плоских») таблиц, где вся информация хранится в единой структуре. Это была эпоха простоты: достаточно одного запроса — и все двести атрибутов пользователя оказывались у вас в руках. Процесс извлечения данных был быстрым и интуитивно понятным, поскольку обходился без сложных соединений и подзапросов.

Однако у этой простоты обнаружилась обратная сторона — избыточность. Представьте, что данные о сотрудниках и их работодателях хранятся в одной таблице. Если компания меняет название, то необходимо обновлять каждую запись, которая связана с изменяемой информацией. Это не только расточительно с точки зрения хранения, но и чревато аномалиями в данных. Также при увеличении количества данных в «широких плоских» таблицах возрастает и риск нарушения консистентности информации.

Читать далее

Impala vs Greenplum vs StarRocks: тестирование производительности на объеме порядка десятков миллионов строк

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели4.6K

Задача: быстро выполнять агрегирующие запросы (JOIN, GROUP BY, COUNT) по десяткам миллионов строк в офлайновых сценариях на Big Data‑платформе. Мы сравнили три подхода: Parquet + Impala в экосистеме CDH, MPP‑движок Greenplum и MPP‑СУБД StarRocks. В единой тестовой среде (SAD ~7 млн, ITEM ~3 млн записей) выполнили серию запросов JOIN + GROUP BY + ORDER BY и замерили суммарное время 10 прогонов. Показано, что внедрение MPP заметно ускоряет аналитику (типично 1–2 с на запрос), при этом StarRocks в среднем немного обходит Greenplum. В статье — методика, параметры развертывания, нюансы импорта из Oracle (CloudCanal) и сводные метрики.

Читать далее

Как использовать Clickhouse без боли

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели8K

ClickHouse — одна из самых популярных систем для анализа данных. По информации TheirStack, этот инструмент использует более 3 700 компаний по всему миру. 

У ClickHouse быстрая аналитика, эффективное сжатие и отличное масштабирование. Но у системы есть и недостатки — ограниченная поддержка UPDATE и DELETE, а также сложная миграция.

Привет, Хабр! Меня зовут Михаил Филимонов, я руковожу разработкой хранилища данных в группе Магнит OMNI. В этой статье я расскажу о проблемах работы с ClickHouse, как их решать и какие инструменты для этого потребуются. 

Читать далее

Дайджест препринтов научных статей в области астрофизики за июль 2025 по версии Попова

Уровень сложностиПростой
Время на прочтение12 мин
Охват и читатели6.3K

Близкая планета вызывает вспышки на звезде (Close-in planet induces flares on its host star)Authors: Ekaterina Ilin et al.Comments: 23 pages, 7 figures, 3 tables. Submitted to Nature 

Наблюдения на TESS и CHEOPS показали, что у молодого G-карлика HIP 67522, вокруг которого обращаются две планеты на низких орбитах, происходят вспышки, вызванные магнитным взаимодействием с одной из планет.

Вертикальная структура и динамика диска Галактики (Vertical Structure and Dynamics of a Galactic Disk)Authors: Chanda J. Jog Comments: 223 pages, 35 figures, 379 references. Invited review for Physics Reports  Большой обзор по структуре и физике галактического диска. На удивление мало формул (с полсотни, и больше половины из них - в 4м разделе), зато много полезных графиков. Приведено много данных наблюдений и разъяснены основные процессы, отвечающие за формирование структуры диска.

Читать далее

Делаем кастомное параллельное чтение по JDBC в Spark 3.0.1

Время на прочтение5 мин
Охват и читатели5.1K

Привет, Хабр! Мы — команда DATA ОАТС в билайн. В этой статье расскажем о кейсе, когда стандартный Spark JDBC не справился с параллельным чтением огромной таблицы из ClickHouse, и мы написали свой «мини-движок». Под катом — разбор ограничений, схема с пулом потоков на экзекуторах и опыт, который может пригодиться не только для ClickHouse.

Читать далее

ClickHouse vs StarRocks: сравнение выбора MPP‑баз данных для всех сценариев

Уровень сложностиПростой
Время на прочтение14 мин
Охват и читатели6K

Сравнение ClickHouse и StarRocks: архитектура и функциональность, типы join и модели данных (широкая таблица vs звезда), конкурентность, частые обновления (Primary Key, Merge‑on‑Read), администрирование и онлайн‑масштабирование. Приводим результаты бенчмарков SSB и TPC‑H, а также тесты загрузки (GitHub dataset). Все тестовые данные и конфигурации актуальны на 2022 год. Если вам интересно, воспроизведите эксперименты по актуальным инструкциям проектов и поделитесь результатами и замечаниями — это поможет уточнить выводы и обновить сравнение.

Читать далее