Как стать автором
Поиск
Написать публикацию
Обновить
21.77

Data Mining *

Глубинный анализ данных

Сначала показывать
Порог рейтинга
Уровень сложности

AI-агенты в деле: 15 рабочих примеров для роста вашего бизнеса

Время на прочтение14 мин
Количество просмотров2.7K

AI-агенты радикально меняют подход технических команд к автоматизации, переходя от традиционных, основанных на правилах workflow к более динамичным, интеллектуальным системам, способным адаптироваться и принимать решения в реальном времени.

В отличие от статической автоматизации, основанной на предопределенных триггерах и действиях, AI-агенты используют большие языковые модели (LLM) для обработки сложных данных, понимания контекста и реагирования на непредсказуемые сценарии.

В этой статье мы рассмотрим 15 практических примеров AI-агентов, продемонстрируем, как они автоматизируют сложные задачи и оптимизируют рабочие процессы. Также мы объясним, как платформы вроде n8n упрощают разработку, кастомизацию и масштабирование AI-агентов для применения в реальных бизнес-кейсах.

Поехали!

Читать далее

Новости

Парсинг российских СМИ

Уровень сложностиПростой
Время на прочтение14 мин
Количество просмотров1.7K

В эпоху больших языковых моделей полноценный сбор информации с сайтов все еще не самый очевидный сценарий, требующий учета многих мелких деталей, а также понимания принципов работы сайта и взаимодействия с ним. В этом случае единственный оптимальный метод сбора такой информации - это парсинг.

В данной статье мы сфокусируемся на парсинге сайтов российских СМИ, в числе которых Meduza,* как официально запрещенное в РФ и более государственно-подконтрольных RussiaToday и Коммерсанта. Разберемся какой это сделать наиболее эффективно и получим текст и метаданные статей. Как основные инструменты используем классические библиотеки в Python: requests, BeautifulSoup, Selenium.

Читать далее

15 лучших библиотек для визуализации данных, о которых должен знать каждый разработчик

Время на прочтение24 мин
Количество просмотров6.7K

Визуализация данных — это не просто способ представить информацию, а настоящий инструмент для открытия новых инсайтов и улучшения принятия решений. В этой статье мы собрали 15 библиотек для визуализации данных, которые стали стандартом в своих областях. Здесь вы найдете как решения для быстрых графиков, так и мощные фреймворки, подходящие для сложных и масштабных задач. Каждая библиотека имеет свои особенности, и в статье мы подробно рассмотрим, какие из них лучше всего подойдут для вашего следующего проекта. Если вы хотите поднять свои визуализации на новый уровень — читайте, разберемся, какие инструменты действительно заслуживают внимания.

Читать далее

Как я оптимизировал обработку спортивных коэффициентов с raceodds.net: от хаоса к прогнозной аналитике

Уровень сложностиСредний
Время на прочтение3 мин
Количество просмотров342

📍 Работа с сырыми спортивными коэффициентами — это как пытаться собрать модель корабля из разбросанных деталей конструктора. Без инструкции. И с половиной лишних запчастей.

Читать далее

Архитектура корпоративных данных: AWS + Snowflake

Время на прочтение21 мин
Количество просмотров890

Одна из самых больших проблем, с которой, как мы видим, сталкиваются дата‑инженеры и инженеры‑аналитики, — это то, что они тратят слишком много времени на поддержание устаревшей инфраструктуры, не имея при этом четкой наблюдаемости сбоев в работе конвейера.

Это приводит к тому, что они постоянно находятся в состоянии тушения пожара и не могут сосредоточиться на решении более важных задач. И хуже всего то, что из‑за этого бизнес теряет доверие к данным.

Читать далее

Data Lake 2.0: Iceberg и Parquet в бою за миллисекунды

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров2.6K

Привет, Хабр! Меня зовут Валерий Бабушкин, я CDO МТС Web Services. Если достаточно много занимаешься машинным обучением, то однажды начинаешь говорить про дата-инженерию — как герой, который много сражается со злом и в итоге сам переходит на темную сторону. Вот и моя очередь настала.

На последнем True Tech Day я рассказал, как Apache Iceberg и Apache Parquet позволяют построить современную инфраструктуру для больших данных. В этом материале я расскажу, какие задачи решает каждый инструмент, как они работают в связке, и сравню производительность Hive с Parquet-партициями против Iceberg с Parquet-таблицами.

Читать далее

MCP: новая игра на рынке искусственного интеллекта

Время на прочтение14 мин
Количество просмотров14K

Всё, что нужно знать о Model Context Protocol (MCP)

«Даже самые продвинутые модели ограничены своей изоляцией от данных — они заперты в информационных силосах и легаси-системах».
Anthropic о важности интеграции контекста

Сегодняшние большие языковые модели (LLM) невероятно умны, но находятся в вакууме. Как только им требуется информация вне их «замороженных» обучающих данных, начинаются проблемы. Чтобы AI-агенты действительно были полезны, им нужно получать актуальный контекст в нужный момент — будь то файлы, базы знаний, инструменты — и даже уметь совершать действия: обновлять документы, отправлять письма, запускать пайплайны.

Так сложилось, что подключение модели ко всем этим внешним источникам данных было хаотичным и нестабильным: разработчикам приходилось писать кастомные интеграции или использовать узкоспециализированные плагины под каждый API или хранилище. Такие «сделанные на коленке» решения были хрупкими и плохо масштабировались.

Чтобы упростить это, Anthropic представила Model Context Protocol (MCP) — открытый стандарт, предназначенный для того, чтобы связать AI-ассистентов с данными и инструментами, подключая любые источники контекста. MCP был анонсирован в ноябре 2024 года. Тогда реакция была сдержанной. Но сегодня MCP — на волне: он уже обогнал LangChain по популярности и, по прогнозам, скоро обойдёт OpenAPI и CrewAI.

Крупные игроки AI-индустрии и open source-сообщества начали активно поддерживать MCP, видя в нем потенциально революционный инструмент для построения агентных систем на базе LLM.

Читать далее

RecBole — «комбайн» на PyTorch для любых рекомендаций

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров1.3K

Привет, Хабр!

Сегодня разберём RecBole — универсальный фреймворк на PyTorch, который отвечает на три насущных вопроса любого ML-инженера рекомендаций:

Как быстро обкатать десятки алгоритмов (от классического MF до SASRec и KGAT) на собственном датасете — без сотни скриптов?
Как хранить все настройки в одном YAML, а не в трёх сотнях аргументов CLI?
Как получить честное сравнение метрик и сразу вынести лучший чекпоинт в прод?

Рассмотрим подробнее под катом.

Читать далее

Кластерные A/B-тесты: как победить эффект соседа

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров661

Привет, Хабр!

Сегодня мы рассмотрим, как спасаться от «эффекта соседа», рандомизируя не пользователей, а их кластеры в A/B тестах.

У классического AB-теста есть аксиома SUTVA: мол, результат конкретного юзера зависит только от его собственной ветки «treatment / control». Реальность улыбается и кидает в лицо соцсетью, где лайк друга поднимает и твою вовлечённость, курьером, который обгоняет коллег и заражает их скоростью, и cпасибками «приведи друга — получи бонус». Итог — наблюдения больше не независимы.

Внутрикамерный жаргон это называет network interference. Чем плотнее граф связей, тем сильнее лечение «просачивается» за контрольные границы.

Читать далее

16 перемен, которые уже меняют корпоративный подход к генеративному ИИ

Время на прочтение11 мин
Количество просмотров1.5K

В 2023 году генеративные ИИ стремительно ворвались в потребительский сегмент, достигнув миллиарда долларов пользовательских расходов за рекордно короткий срок. В 2024-м, по нашим оценкам, потенциал выручки в enterprise-сегменте будет в несколько раз выше.

Пока в прошлом году потребители часами общались с новыми AI-компаньонами или создавали изображения и видео с помощью diffusion-моделей, корпоративное внедрение genAI, казалось, ограничивалось лишь очевидными кейсами и выпуском «GPT-оберток» в виде новых SKU. Скептики задавались вопросами: действительно ли genAI может масштабироваться в enterprise? Разве мы не застряли а трёх одинаковых сценариях? Способны ли стартапы вообще зарабатывать на этом деньги? А вдруг это просто хайп?

За последние несколько месяцев мы пообщались с десятками топ-менеджеров компаний из списка Fortune 500 и других лидеров enterprise-сегмента, а также провели опрос среди ещё 70 компаний, чтобы понять, как они используют genAI, как покупают решения и как планируют бюджеты. Мы были поражены тем, насколько сильно изменилась структура инвестиций и отношение к генеративным ИИ всего за полгода. Хотя у этих лидеров всё ещё остаются определённые опасения по поводу внедрения generative AI, они почти утроили бюджеты, расширили число рабочих кейсов, реализованных на меньших open-source моделях, и начали активно выводить задачи из стадии эксперимента в продакшн.

Для фаундеров это колоссальная возможность. Мы убеждены: те AI-стартапы, которые, во-первых, ориентируются на стратегические AI-инициативы корпораций с учетом их болевых точек, и, во-вторых, трансформируют сервисную модель в масштабируемые продуктовые решения, — именно они смогут захватить значительную долю нового инвестиционного потока и закрепиться на рынке.

Читать далее

Кросс-валидация на временных рядах: как не перемешать время

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров1.9K

Привет, Хабр!

Сегодня рассмотрим то, что чаще всего ломает даже круто выглядящие модели при работе с временными рядами — неправильная кросс‑валидация. Разберем, почему KFold тут не работает, как легко словить утечку будущего, какие сплиттеры реально честны по отношению ко времени, как валидировать фичи с лагами и агрегатами.

Читать далее

ERROR на my.telegram.org: 99% гайд по его обходу для создания Telegram App

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров2.4K

Информация об этой ошибке в интернете есть, но она крайне разрозненная. Где-то — только часть советов, а в большинстве случаев — обсуждение заканчивается ничем. Пара примеров: здесь и здесь. Поэтому захотелось собрать всё в одном месте. Даже если я частично повторю чью-то статью или мысль, считаю, что подобные посты стоит обновлять, чтобы актуальные и работающие решения всегда были под рукой.

Поэтому решил собрать здесь всё, что узнал — чтобы и у тех, кто столкнется с этим, процесс прошёл безболезненнее и самому через следующие 7 лет обратиться к рабочему (на данный момент😃) способу и понять, изменилось ли что-то.

Для каждого пункта выведена рабочая рекомендация

Читать далее

Чем живут создатели ИИ? ML’щики, приоткройте чёрный ящик, расскажите о себе в нашем опросе

Время на прочтение1 мин
Количество просмотров19K

Пока весь мир обсуждает революцию ИИ, те, кто её творят, остаются в тени и просто делают свою работу. Именно им, ML- и DS-специалистам, человечество обязано прорывам в технологиях. Но какие они на работе и в жизни, чем интересуются и главное — что думают об ИИ, который создают? Мы решили расспросить их самих, чтобы составить честный портрет современного ML-щика. Если вы занимаетесь ML и Data Science, добавьте свои штрихи этому портрету — пройдите наш небольшой опрос. А мы потом покажем вам — и всей аудитории Хабра — получившуюся картину.

Пройти опрос

Ближайшие события

Кто, как и зачем внедряет Gen AI в 2025: опыт 100 CIO

Время на прочтение13 мин
Количество просмотров1.1K

Чуть больше года назад мы выделили 16 ключевых изменений в том, как компании подходили к разработке и закупке генеративных ИИ. С тех пор ландшафт продолжил стремительно эволюционировать, поэтому мы снова провели беседы с более чем двумя десятками корпоративных заказчиков и опросили 100 CIO из 15 отраслей, чтобы помочь фаундерам понять, как в 2025 в корпорациях используют, приобретают и закладывают бюджеты под generative AI.

Даже в такой динамичной сфере, где единственная постоянная — это перемены, структура рынка genAI изменилась куда сильнее, чем мы ожидали после прошлого исследования.

Читать далее

Вычисляем коэффициент популярности крейтов Rust для работы и для хобби-проектов

Время на прочтение5 мин
Количество просмотров2.4K

Твит, который подтолкнул меня к реализации описанного в статье мини-проекта.

Взявшись за эту задачу, я около двух часов ваял небольшой скрипт, который будет скрейпить данные из базы крейтов Rust crates.io и анализировать их для выяснения, какие пакеты чаще скачиваются для работы (то есть в будние дни), а какие для развлечения (то есть в выходные).

Читать далее

Проверка времени: действительно ли искусство дорожает с возрастом?

Время на прочтение13 мин
Количество просмотров1.5K

Недавно команда проекта MyInvest.Art обратилась к нашей ML-группе с амбициозной задачей: проверить, действительно ли возраст произведения искусства определяет его ценность. Как руководитель, я привык опираться на данные, а не на предположения. Поэтому я поручил команде глубоко погрузиться в аукционные данные — как российские, так и мировые, чтобы дать четкий ответ: стоит ли инвестировать в искусство, и если да, то как это делать с умом.

Общепринятое мнение гласит, что старые работы ценятся выше. Но подтверждается ли это реальными данными? Команда проанализировала 54 994 аукционные сделки (все сделки на российском рынке в базе данных, у которых была известна цена продажи). 

Уникальных произведений искусства: 49351 (Количество уникальных ID в БД) 

Количество повторных продаж (уникальных artwork_id, встречающихся более одного раза): 3925

То есть лишь 8% произведений выходят на рынок повторно. Уже на этом этапе становится понятно: вторичный рынок искусства в России работает не так уж активно.

Для точности анализа мы убрали из выборки работы с отсутствующими ценами, а также тиражную графику (medium_type != 'prints'). Кроме того, между двумя продажами одной и той же работы должно было пройти не менее года, иначе это, скорее всего, тоже будет относиться к тиражной работе.

В финальном датафрейме — 1 389 работ, которые реально перепродавались через аукционы. Именно их ценовая динамика поможет нам понять, действительно ли возраст влияет на стоимость произведений искусства.

Читать далее

Вселенная OpenAI: полный путеводитель по семейству моделей GPT в 2025 году

Время на прочтение11 мин
Количество просмотров3.7K

(версия статьи актуальна на 26 июня 2025 года)

OpenAI за несколько лет превратила ChatGPT из экспериментального проекта в полноценного цифрового помощника, который умеет не только писать тексты, но и думать, видеть, слышать и даже спорить. Это стало настоящим поворотным моментом в истории ИИ и индустрия вошла в новый цикл развития. Появились тысячи приложений на базе LLM, десятки компаний сменили стратегию, а работа с языковыми моделями стала повседневной реальностью.

Новые версии выходят регулярно, и если вы чувствуете себя потерянными в этом потоке, то вы не одиноки. Мы специально подготовили этот материал, чтобы рассказать обо всех ключевых GPT-моделях и сопутствующих инструментов OpenAI, чем они отличаются и какую из них выбрать для своих задач.

Читать далее

Обнаружение дронов (БПЛА) с использованием ИИ и компьютерного зрения

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров6.6K

Обнаружение дронов (БПЛА) object-detection с использованием ИИ YOLOv12 и компьютерного зрения OpenCV.

Читать далее

MCP и будущее AI: что стоит знать сегодня, чтобы не отстать завтра

Время на прочтение11 мин
Количество просмотров7.2K

С тех пор как OpenAI внедрила функцию function calling в 2023 году, я всё чаще задумываюсь о том, что потребуется, чтобы по-настоящему разблокировать экосистему агентов и инструментов. По мере того как базовые модели становятся всё более интеллектуальными, возможности агентов взаимодействовать с внешними инструментами, данными и API всё больше фрагментируются: разработчики вынуждены реализовывать агентов с индивидуальной бизнес-логикой под каждую отдельную систему, в которой агент работает или с которой интегрируется.

Очевидно, что необходим единый стандартный интерфейс для исполнения, извлечения данных и вызова инструментов. API стали первым универсальным стандартом для Интернета — общим языком, с помощью которого взаимодействуют программные системы. Но у AI-моделей до сих пор нет эквивалента такого унифицированного протокола.

Model Context Protocol (MCP), представленный в ноябре 2024 года, привлек большое внимание в сообществе разработчиков и AI-энтузиастов как потенциальное решение этой проблемы. В этой статье мы разберем, что такое MCP, как он меняет способ взаимодействия AI с инструментами, что уже создают разработчики на его основе и какие задачи еще предстоит решить.

Поехали.

Читать далее

Автоматизация сбора и анализа вакансий с сайта Хэдхантер

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров998

Заинтересовался задачей автоматизации сбора и проведения небольшого анализа вакансий IT-специалистов в России. После беглого исследования пришел к выводу, что удобных бесплатных и расширяемых инструментов нет и решил написать свой на Python. В качестве источника идей, прежде всего для графиков, использовал проект hh_research Александра Капитанова.

HH Inspector получился универсальным и может быть использован широким кругом пользователей в качестве базы для решения своих задач, поэтому выкладываю его в качестве open-source проекта. Все подробности - ниже.

Читать дальше!
1
23 ...