Как стать автором
Поиск
Написать публикацию
Обновить
31.92

Data Mining *

Глубинный анализ данных

Сначала показывать
Порог рейтинга
Уровень сложности

MCP — новый кирпичик в фундаменте AI-разработки

Время на прочтение9 мин
Количество просмотров769

Одна из горячих тем в области AI-кодинг-тулов и developer tooling — протокол MCP (Model Context Protocol), представленный Anthropic в ноябре 2024 года. Он стремительно набирает популярность: AI-модели и инструменты для разработчиков активно внедряют его.

Аналогия для объяснения MCP — это как «порт USB-C для AI-приложений»: он создает универсальную точку расширения, через которую LLM и девтулы могут интегрироваться друг с другом, а также с базами данных, тикетинг-системами и т. д. Концепция начинает набирать популярность и в других областях, но MCP изначально создавался как способ расширить функциональность девелоперских IDE — таких как Claude Desktop, Claude Code, VS Code, Cursor, Windsurf и других. Сегодня мы сосредоточимся именно на этом применении, разобрав:

1. Что такое MCP? Практический пример. Раньше мне приходилось использовать отдельный инструмент, чтобы делать запросы к базе данных в production-приложении. С MCP я могу «разговаривать» с базой данных прямо из IDE — это действительно меняет правила игры!

2. Происхождение MCP.  Два инженера из Anthropic — Дэвид Сориа Парра и Джастин Спар-Саммерс — реализовали MCP, решая собственную проблему: они хотели, чтобы Claude Desktop лучше работал с девтулзами.

3. Чтобы понять MCP, нужно понимать Language Server Protocol (LSP). Многие базовые идеи MCP вдохновлены подходом Microsoft к упрощению интеграции языковой поддержки в IDE.

Читать далее

Новости

Парсинг Авито. Делаем парсер на Python без ограничения по запросам

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров9.1K

Всем привет! Существует такая проблема, связанная с тем, что хорошие объявления на Avito исчезают буквально за минуты. Хотите купить студию по выгодной цене? Или найти iPhone дешевле рынка? Пока вы открываете сайт — кто-то уже договорился. А стандартное APi ограничивает число запросов.

Сегодня мы соберём максимально простого помощника, который будет сам следить за новыми объявлениями на Avito и моментально отправлять вам уведомление в Телеграм. Он будет работать в фоне, не требуя лишних окон или настроек. И главное, мы сделаем так, что Авито не будет блокировать его по числу запросов, выдавая 429 ответ.

Читать далее

Лайфхаки BI SuperSet (часть 1)

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров1.3K

10 базовых и не очень лайфхаков по работе с BI Apache SuperSet, чтобы сделать её проще и эффективней.

Читать далее

Retrieval-Augmented Generation (RAG): глубокий технический обзор

Время на прочтение34 мин
Количество просмотров5.2K

Retrieval‑Augmented Generation (RAG) — это архитектурный подход к генеративным моделям, который сочетает навыки поиска информации с генеративными возможностями больших языковых моделей (LLM). Идея RAG была предложена в 2020 году, чтобы преодолеть ограничение LLM — замкнутость на знаниях из обучающих данных. Вместо попыток «вживить» все знания в параметры модели, RAG‑подход позволяет модели запрашивать актуальные сведения из внешних источников (баз знаний) во время генерации ответа. Это обеспечивает более точные и актуальные ответы, опирающиеся на факты, а не только на память модели.

В этой статье мы подробно рассмотрим: архитектуру RAG, её компоненты и этапы работы, современные инструменты и практики для реализации RAG, примеры кода на Python, кейсы применения в бизнесе и науке, технические вызовы и лучшие практики, сравнение RAG с классическим fine‑tuning, перспективы технологии.

Читать далее

Расчет RFM-модели в чистом SQL на примере магазина котиков: коротко

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров1.3K

Привет, Хабр!

Сегодня мы рассмотрим, как реализовать RFM‑модель в чистом SQL на примере магазина котиков.

Читать далее

Эволюция архитектур больших языковых моделей: от GPT-2 к современным решениям

Время на прочтение21 мин
Количество просмотров1.9K

Прошло семь лет с момента разработки оригинальной архитектуры GPT. На первый взгляд, если оглянуться на GPT-2 (2019) и взглянуть вперёд на DeepSeek-V3 и Llama 4 (2024–2025), можно удивиться, насколько эти модели по-прежнему структурно схожи.

Разумеется, позиционные эмбеддинги эволюционировали от абсолютных к роторационным (RoPE), Multi-Head Attention в значительной степени уступил место Grouped-Query Attention, а более эффективная SwiGLU заменила такие функции активации, как GELU. Но если отбросить эти незначительные усовершенствования, действительно ли мы наблюдаем принципиальные архитектурные сдвиги — или просто продолжаем полировать одни и те же фундаментальные конструкции?

Сравнение LLM между собой с целью выявления ключевых факторов, влияющих на их качество (или недостатки), по-прежнему остаётся крайне нетривиальной задачей: датасеты, методы обучения и гиперпараметры сильно различаются и зачастую плохо документированы.

Тем не менее, я считаю, что изучение именно архитектурных изменений остаётся ценным подходом, позволяющим понять, над чем работают разработчики LLM в 2025 году. 

Читать далее

Изящные монады точек эллиптической кривой

Уровень сложностиСложный
Время на прочтение3 мин
Количество просмотров4K

Перечитал давний доклад академика Арнольда В.И. о сложности последовательностей нулей и единиц, в которй он использует монады для определения сложности.

Доклад в двух вариантах, с цветными картинками и академик тут очень красиво и подробно рассказывает, почему одна последовательность сложнее другой и как это видно и строгий вариант «Доклад в Московском математическом обществе».

Читать далее

15 примеров применения Natural Language Processing

Время на прочтение8 мин
Количество просмотров1.8K

Машинное обучение — это технология искусственного интеллекта, используемая для распознавания закономерностей, обучения на основе данных и принятия решений автоматически — без вмешательства человека. С другой стороны, обработка естественного языка (Natural Language Processing, NLP) — это форма ИИ, позволяющая машинам интерпретировать и понимать человеческий язык.

В этой статье мы попробуем разобраться с тем, как используется NLP для решения реальных задач и рассмотрим 15 примеров использования данной технологии и машинного обучения.

 

Читать далее

Синергия Process Mining и BI: как Страховой Дом ВСК строит эко-систему процессной аналитики Proceset в ИТ

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров578

Привет, Хабр! Я, Мадаров Артур, руководитель дирекции процессов эксплуатации и ИТ-услуг Страхового Дома ВСК.

В своей прошлой статье, «Реинжиниринг процессов контроля качества технической поддержки», я рассказывал, с чего началась наша трансформация: как мы перешли от разрозненной отчётности в Excel к системной BI-аналитике, как формировали культуру data-driven внутри ИТ-блока ВСК и зачем всё это нужно.

На пятой встрече ProcessTech и Страхового Дома ВСК я рассказал, что было дальше: как мы из BI-дашбордов перешли к процессной аналитике, внедрили инструменты Process Mining, Task Mining и построили центр компетенций по процессной аналитике в ИТ.

Эта статья — почти практический гайд по внедрению процессной аналитики в крупной компании. Без обобщений. Только конкретика, цифры, архитектура решений и кейсы. Рассчитываю, что статья будет полезна как для ИТ-специалистов, так и для руководителей, которые хотят перестать управлять на основе ощущения, а не данных.

Почему мы продолжили путь: от BI к Process Mining

Всего за 5 месяцев после закупки лицензий в ИТ-блоке уже 9 внутри командных review и рабочих групп с бизнесом проводятся с демонстрацией BI-аналитики Proceset (без Power Point и Excel). На первом этапе трансформации мы выстроили мощный слой BI. Благодаря интерактивным дашбордам:

Читать далее

AI-агенты в деле: 15 рабочих примеров для роста вашего бизнеса

Время на прочтение14 мин
Количество просмотров7.5K

AI-агенты радикально меняют подход технических команд к автоматизации, переходя от традиционных, основанных на правилах workflow к более динамичным, интеллектуальным системам, способным адаптироваться и принимать решения в реальном времени.

В отличие от статической автоматизации, основанной на предопределенных триггерах и действиях, AI-агенты используют большие языковые модели (LLM) для обработки сложных данных, понимания контекста и реагирования на непредсказуемые сценарии.

В этой статье мы рассмотрим 15 практических примеров AI-агентов, продемонстрируем, как они автоматизируют сложные задачи и оптимизируют рабочие процессы. Также мы объясним, как платформы вроде n8n упрощают разработку, кастомизацию и масштабирование AI-агентов для применения в реальных бизнес-кейсах.

Поехали!

Читать далее

Парсинг российских СМИ

Уровень сложностиПростой
Время на прочтение14 мин
Количество просмотров2.1K

В эпоху больших языковых моделей полноценный сбор информации с сайтов все еще не самый очевидный сценарий, требующий учета многих мелких деталей, а также понимания принципов работы сайта и взаимодействия с ним. В этом случае единственный оптимальный метод сбора такой информации - это парсинг.

В данной статье мы сфокусируемся на парсинге сайтов российских СМИ, в числе которых Meduza,* как официально запрещенное в РФ и более государственно-подконтрольных RussiaToday и Коммерсанта. Разберемся какой это сделать наиболее эффективно и получим текст и метаданные статей. Как основные инструменты используем классические библиотеки в Python: requests, BeautifulSoup, Selenium.

Читать далее

15 лучших библиотек для визуализации данных, о которых должен знать каждый разработчик

Время на прочтение24 мин
Количество просмотров11K

Визуализация данных — это не просто способ представить информацию, а настоящий инструмент для открытия новых инсайтов и улучшения принятия решений. В этой статье мы собрали 15 библиотек для визуализации данных, которые стали стандартом в своих областях. Здесь вы найдете как решения для быстрых графиков, так и мощные фреймворки, подходящие для сложных и масштабных задач. Каждая библиотека имеет свои особенности, и в статье мы подробно рассмотрим, какие из них лучше всего подойдут для вашего следующего проекта. Если вы хотите поднять свои визуализации на новый уровень — читайте, разберемся, какие инструменты действительно заслуживают внимания.

Читать далее

Как я оптимизировал обработку спортивных коэффициентов с raceodds.net: от хаоса к прогнозной аналитике

Уровень сложностиСредний
Время на прочтение3 мин
Количество просмотров424

📍 Работа с сырыми спортивными коэффициентами — это как пытаться собрать модель корабля из разбросанных деталей конструктора. Без инструкции. И с половиной лишних запчастей.

Читать далее

Ближайшие события

Архитектура корпоративных данных: AWS + Snowflake

Время на прочтение21 мин
Количество просмотров1.6K

Одна из самых больших проблем, с которой, как мы видим, сталкиваются дата‑инженеры и инженеры‑аналитики, — это то, что они тратят слишком много времени на поддержание устаревшей инфраструктуры, не имея при этом четкой наблюдаемости сбоев в работе конвейера.

Это приводит к тому, что они постоянно находятся в состоянии тушения пожара и не могут сосредоточиться на решении более важных задач. И хуже всего то, что из‑за этого бизнес теряет доверие к данным.

Читать далее

Data Lake 2.0: Iceberg и Parquet в бою за миллисекунды

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров3.2K

Привет, Хабр! Меня зовут Валерий Бабушкин, я CDO МТС Web Services. Если достаточно много занимаешься машинным обучением, то однажды начинаешь говорить про дата-инженерию — как герой, который много сражается со злом и в итоге сам переходит на темную сторону. Вот и моя очередь настала.

На последнем True Tech Day я рассказал, как Apache Iceberg и Apache Parquet позволяют построить современную инфраструктуру для больших данных. В этом материале я расскажу, какие задачи решает каждый инструмент, как они работают в связке, и сравню производительность Hive с Parquet-партициями против Iceberg с Parquet-таблицами.

Читать далее

MCP: новая игра на рынке искусственного интеллекта

Время на прочтение14 мин
Количество просмотров15K

Всё, что нужно знать о Model Context Protocol (MCP)

«Даже самые продвинутые модели ограничены своей изоляцией от данных — они заперты в информационных силосах и легаси-системах».
Anthropic о важности интеграции контекста

Сегодняшние большие языковые модели (LLM) невероятно умны, но находятся в вакууме. Как только им требуется информация вне их «замороженных» обучающих данных, начинаются проблемы. Чтобы AI-агенты действительно были полезны, им нужно получать актуальный контекст в нужный момент — будь то файлы, базы знаний, инструменты — и даже уметь совершать действия: обновлять документы, отправлять письма, запускать пайплайны.

Так сложилось, что подключение модели ко всем этим внешним источникам данных было хаотичным и нестабильным: разработчикам приходилось писать кастомные интеграции или использовать узкоспециализированные плагины под каждый API или хранилище. Такие «сделанные на коленке» решения были хрупкими и плохо масштабировались.

Чтобы упростить это, Anthropic представила Model Context Protocol (MCP) — открытый стандарт, предназначенный для того, чтобы связать AI-ассистентов с данными и инструментами, подключая любые источники контекста. MCP был анонсирован в ноябре 2024 года. Тогда реакция была сдержанной. Но сегодня MCP — на волне: он уже обогнал LangChain по популярности и, по прогнозам, скоро обойдёт OpenAPI и CrewAI.

Крупные игроки AI-индустрии и open source-сообщества начали активно поддерживать MCP, видя в нем потенциально революционный инструмент для построения агентных систем на базе LLM.

Читать далее

RecBole — «комбайн» на PyTorch для любых рекомендаций

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров1.3K

Привет, Хабр!

Сегодня разберём RecBole — универсальный фреймворк на PyTorch, который отвечает на три насущных вопроса любого ML-инженера рекомендаций:

Как быстро обкатать десятки алгоритмов (от классического MF до SASRec и KGAT) на собственном датасете — без сотни скриптов?
Как хранить все настройки в одном YAML, а не в трёх сотнях аргументов CLI?
Как получить честное сравнение метрик и сразу вынести лучший чекпоинт в прод?

Рассмотрим подробнее под катом.

Читать далее

Кластерные A/B-тесты: как победить эффект соседа

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров700

Привет, Хабр!

Сегодня мы рассмотрим, как спасаться от «эффекта соседа», рандомизируя не пользователей, а их кластеры в A/B тестах.

У классического AB-теста есть аксиома SUTVA: мол, результат конкретного юзера зависит только от его собственной ветки «treatment / control». Реальность улыбается и кидает в лицо соцсетью, где лайк друга поднимает и твою вовлечённость, курьером, который обгоняет коллег и заражает их скоростью, и cпасибками «приведи друга — получи бонус». Итог — наблюдения больше не независимы.

Внутрикамерный жаргон это называет network interference. Чем плотнее граф связей, тем сильнее лечение «просачивается» за контрольные границы.

Читать далее

16 перемен, которые уже меняют корпоративный подход к генеративному ИИ

Время на прочтение11 мин
Количество просмотров1.5K

В 2023 году генеративные ИИ стремительно ворвались в потребительский сегмент, достигнув миллиарда долларов пользовательских расходов за рекордно короткий срок. В 2024-м, по нашим оценкам, потенциал выручки в enterprise-сегменте будет в несколько раз выше.

Пока в прошлом году потребители часами общались с новыми AI-компаньонами или создавали изображения и видео с помощью diffusion-моделей, корпоративное внедрение genAI, казалось, ограничивалось лишь очевидными кейсами и выпуском «GPT-оберток» в виде новых SKU. Скептики задавались вопросами: действительно ли genAI может масштабироваться в enterprise? Разве мы не застряли в трёх одинаковых сценариях? Способны ли стартапы вообще зарабатывать на этом деньги? А вдруг это просто хайп?

За последние несколько месяцев мы пообщались с десятками топ-менеджеров компаний из списка Fortune 500 и других лидеров enterprise-сегмента, а также провели опрос среди ещё 70 компаний, чтобы понять, как они используют genAI, как покупают решения и как планируют бюджеты. Мы были поражены тем, насколько сильно изменилась структура инвестиций и отношение к генеративным ИИ всего за полгода. Хотя у этих лидеров всё ещё остаются определённые опасения по поводу внедрения generative AI, они почти утроили бюджеты, расширили число рабочих кейсов, реализованных на меньших open-source моделях, и начали активно выводить задачи из стадии эксперимента в продакшн.

Для фаундеров это колоссальная возможность. Мы убеждены: те AI-стартапы, которые, во-первых, ориентируются на стратегические AI-инициативы корпораций с учетом их болевых точек, и, во-вторых, трансформируют сервисную модель в масштабируемые продуктовые решения, — именно они смогут захватить значительную долю нового инвестиционного потока и закрепиться на рынке.

Читать далее

Кросс-валидация на временных рядах: как не перемешать время

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров1.9K

Привет, Хабр!

Сегодня рассмотрим то, что чаще всего ломает даже круто выглядящие модели при работе с временными рядами — неправильная кросс‑валидация. Разберем, почему KFold тут не работает, как легко словить утечку будущего, какие сплиттеры реально честны по отношению ко времени, как валидировать фичи с лагами и агрегатами.

Читать далее
1
23 ...