
Если вы проводите панельные исследования, то обязательно столкнетесь с одним из главных вызовов – набрать выборку достаточного размера, которая будет достоверно отражать важные для исследования параметры генеральной совокупности. Набрать большую и качественную, а значит несмещенную выборку с применением оффлайн-рекрутмента дорого и проблематично. Однако существует альтернативный вариант – это онлайн-рекрутмент, который давно зарекомендовал себя как максимально быстрый, простой и дешевый способ привлечь респондентов для различных исследований. В то же время выборки, набранные в интернете, являются неслучайными и, как правило, искажены по ряду параметров, даже если процедура рекрутирования была хорошо спланирована. В этой статье мы расскажем о методе Propensity Score Adjustment, который применили для коррекции смещений и улучшения данных, полученных на онлайн-панелях. Этот алгоритм помогает калибровать (уточнять) вклад респондентов, набранных в панель онлайн.