Как стать автором
Поиск
Написать публикацию
Обновить
31.92

Data Mining *

Глубинный анализ данных

Сначала показывать
Порог рейтинга
Уровень сложности

Common Bird Census, или биоинформатика в орнитологии. Проект в хорошие руки

Время на прочтение8 мин
Количество просмотров3.6K
Всем доброго времени, друзья.

Введение


Когда мы думаем о биоинформатике, мы обычно представляем себе какие-нибудь сложные последовательности ДНК, фолдинг белка или, на худой конец, моделирование диффузии вируса.

В данной же статье речь пойдёт несколько о другой теме, куда более близкой, можно сказать, машинному зрению и анализу документов, или даже прикладной автоматизации, чем высокой науке. Но на самом деле, тема важна и актуальна, хотя бы уже потому, что существует в очень интересной экологической нише.

КДПВ:



Кого заинтересовал — прошу под кат.
Читать дальше →

Открытый курс машинного обучения. Тема 3. Классификация, деревья решений и метод ближайших соседей

Время на прочтение33 мин
Количество просмотров545K

Привет всем, кто проходит курс машинного обучения на Хабре!


В первых двух частях (1, 2) мы попрактиковались в первичном анализе данных с Pandas и в построении картинок, позволяющих делать выводы по данным. Сегодня наконец перейдем к машинному обучению. Поговорим о задачах машинного обучения и рассмотрим 2 простых подхода – деревья решений и метод ближайших соседей. Также обсудим, как с помощью кросс-валидации выбирать модель для конкретных данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.

Читать дальше →

Открытый курс машинного обучения. Тема 2: Визуализация данных c Python

Время на прочтение15 мин
Количество просмотров444K

Второе занятие посвящено визуализации данных в Python. Сначала мы посмотрим на основные методы библиотек Seaborn и Plotly, затем поанализируем знакомый нам по первой статье набор данных по оттоку клиентов телеком-оператора и подглядим в n-мерное пространство с помощью алгоритма t-SNE. Есть и видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Сейчас статья уже будет существенно длиннее. Готовы? Поехали!

Читать дальше →

Дисциплина, Точность, Внимание к деталям

Время на прочтение5 мин
Количество просмотров6.7K

Введение:


В этой статье речь пойдет о работе с Microsoft Analysis Services и немного о хранилище на Microsoft SQL Server, с которым SSAS работает. Мне пришлось столкнуться с не совсем тривиальными вещами и порой приходилось “прыгать через голову” ради того, чтобы сделать то, что от меня хотят. Работать приходилось в перерывах между совещаниями. Порой новый функционал обсуждался дольше, чем разрабатывался. Часто на совещаниях, по несколько раз, приходилось рассказывать одно и тоже. Когда я сказал, что мне сложно совещаться дольше одного часа, на меня посмотрели с удивлением и непониманием. Во многом, благодаря такой обстановке и появились эти, не совсем тривиальные вещи, о которых я решил написать.
Читать дальше →

Тонкости R. Как минута час экономит

Время на прочтение7 мин
Количество просмотров8.7K

Довольно часто enterprise задачи по обработке данных затрагивают данные, сопровождаемые временной меткой. В R такие метки, обычно хранятся как класс POSIXct. Выбор методов работы с таким типом данных по принципу аналогии может привести к большому разочарованию и убеждению о крайней медлительности R. Хотя если взглянуть на эту чуть более пристально, то оказывается, что дело не совсем в R, а в руках и голове.


Ниже затрону пару кейсов, которые встретились в этом месяце и возможные варианты их решения. В ходе решения появляются весьма интересные вопросы. Заодно упомяну инструменты, которые оказываются крайне полезными для решения подобных задачек. Практика показала, что об их существовании знают немногие.


Читать дальше →

Открытый курс машинного обучения. Тема 1. Первичный анализ данных с Pandas

Уровень сложностиПростой
Время на прочтение15 мин
Количество просмотров1.1M


Открытый курс машинного обучения mlcourse.ai сообщества OpenDataScience – это сбалансированный по теории и практике курс, дающий как знания, так и навыки (необходимые, но не достаточные) машинного обучения уровня Junior Data Scientist. Нечасто встретите и подробное описание математики, стоящей за используемыми алгоритмами, и соревнования Kaggle Inclass, и примеры бизнес-применения машинного обучения в одном курсе. С 2017 по 2019 годы Юрий Кашницкий yorko и большая команда ODS проводили живые запуски курса дважды в год – с домашними заданиями, соревнованиями и общим рейтингом учаcтников (имена героев запечатлены тут). Сейчас курс в режиме самостоятельного прохождения.

Читать дальше →

Аналитические данные за пределами аналитики в Wrike

Время на прочтение8 мин
Количество просмотров4.6K

Дата инженер в ожидании задачи на спарке.


За годы разработки Wrike у нас накопилось много разрозненной информации о действиях пользователя. Эта информация разбросана по нескольким базам данных, логам, и внешним сервисам, и нам, аналитикам, нужно собрать эти данные вместе, найти в них закономерности и найти ответы на вечные вопросы SaaS’а:


  • Почему уходят клиенты?
  • Какие пользователи приносят нам деньги?
  • Как развивать продукт дальше?

Большинство задач мы решаем с помощью SQL, но запросы к логам через SQL — громоздкие и медленные. Их можно использовать для автоматики или подробной аналитики, но если нужно что-то быстро посмотреть, на подготовку данных уйдёт больше времени, чем на анализ.


Если смотреть приходится много и часто, это вызывает боль, в этой статье мы расскажем, как её преодолеть и как извлечь максимальную пользу из полученных данных.

Читать дальше →

Интересные алгоритмы кластеризации, часть вторая: DBSCAN

Время на прочтение10 мин
Количество просмотров113K
Часть первая — Affinity Propagation
Часть вторая — DBSCAN
Часть третья — кластеризация временных рядов
Часть четвёртая — Self-Organizing Maps (SOM)
Часть пятая — Growing Neural Gas (GNG)

Углубимся ещё немного в малохоженные дебри Data Science. Сегодня в очереди на препарацию алгоритм кластеризации DBSCAN. Прошу под кат людей, которые сталкивались или собираются столкнуться с кластеризацией данных, в которых встречаются сгустки произвольной формы — сегодня ваш арсенал пополнится отличным инструментом.


Читать дальше →

R в enterprise задачах. Хитрости и трюки

Время на прочтение7 мин
Количество просмотров11K

Несмотря на то, что задачи рядового бизнеса очень часто далеки от популярной темы больших данных и машинного обучения и часто связаны с обработкой относительно малых объёмов информации [десятки мегабайт — десятки гигабайт], размазанной в произвольных представлениях по различным видам источников, применение R в качестве основного инструмента позволяет легко и элегантно автоматизировать и ускорить эти задачи.


И, естественно, после проведения анализа необходимо все это презентовать, для чего можно с успехом использовать Shiny. Далее я приведу ряд трюков и подходов, которые могут помочь в этой задачах. Уверен, что любой практикующий аналитик сможет легко добавить свои хитрости, все зависит от решаемого класса задач.


Читать дальше →

Superjob Data Science Meetup

Время на прочтение2 мин
Количество просмотров3.8K
Superjob приглашает на Data Science Meetup. Встречаемся 2 марта в нашем офисе на Малой Дмитровке.

image

Темы и спикеры:

  • «Применение алгоритмов поиска нечетких дубликатов в поиске вакансий»

Дмитрий Кожокарь, старший разработчик Superjob, расскажет об опыте создания эффективного алгоритма по поиску нечетких дубликатов среди большого количества полуструктурированных текстовых записей. В докладе рассматривается использование функции из семейства locality-sensitive hashing с дополнительными оптимизациями для выявления схожих вакансий и последующего объединения их в кластеры.
Читать дальше →

Вебинар: Введение в Singularity

Время на прочтение1 мин
Количество просмотров2.7K


Команда FlyElephant приглашает всех на вебинар "Введение в Singularity", который проведет
Gregory Kurtzer (HPC Systems Architect и Technical Lead в Lawrence Berkeley National Laboratory).
Вебинар будет проходить завтра, 15 февраля, в 19:00 (EET) / 9:00 am (PST). Язык — английский.
Читать дальше →

Cognitive Services & LUIS: Введение в распознавание естественного языка

Время на прочтение7 мин
Количество просмотров8.4K
В этой статье мы поговорим о понимании языка (о лингвистических вычислениях, таких как назначение меток, синтаксический анализ и так далее) и обратим особое внимание на два API: Linguistic Analysis API и интеллектуальную службу распознавания речи (LUIS). Если вы любите английский язык так же как русский и увлекаетесь обучением искусственного интеллекта, добро пожаловать под кат.


Читать дальше →

Черновик книги Эндрю Ына «Жажда машинного обучения», главы 1-7

Время на прочтение10 мин
Количество просмотров33K
В декабре прошлого года в переписке американских коллег по data science прокатилась волна обсуждения долгожданного черновика новой книги гуру машинного обучения Эндрю Ына (Andrew Ng) «Жажда машинного обучения: стратегии для инженеров в эпоху глубинного обучения». Долгожданного, потому что книга была анонсирована ещё летом 2016 года, и вот, наконец, появилось несколько глав.

image

Представляю вниманию Хабра-сообщества перевод первых семи глав из доступных в настоящий момент четырнадцати. Замечу, что это не финальный вариант книги, а черновик. В нем есть ряд неточностей. Эндрю Ын предлагает писать свои комментарии и замечания сюда. Начинает автор с вещей, которые кажутся очевидными. Дальше ожидаются более сложные концепции.
Читать дальше →

Ближайшие события

Техносфере Mail.Ru — три года

Время на прочтение9 мин
Количество просмотров7.6K

Сегодня исполнилось три года с момента запуска одного из наших образовательных проектов — Техносферы Mail.Ru, реализованного совместно с факультетом ВМК МГУ им. Ломоносова. Программа Техносферы рассчитана на подготовку специалистов в сфере больших данных. Изначально она была рассчитана на один год и состояла из шести дисциплин. Однако спустя год мы пересмотрели программу и сделали её двухгодичной. В течение четырёх семестров студенты изучают 12 дисциплин, выполняя большой объём практических работ. Заодно был разработан подготовительный курс «Алгоритмы и структуры данных».

В Техносферу принимают студентов 2—4-х курсов. Несмотря на то что схема вступительных экзаменов во все наши образовательные проекты одинакова (студенты сдают онлайн-тест и проходят очное собеседование), в Техносфере мы больше ориентируемся на базовые знания по высшей математике. Помимо чтения лекций мы создали лабораторию, где студенты работают с реальными задачами, с которыми мы сталкиваемся в Mail.Ru Group. Например, пытаются улучшить аналитические алгоритмы, создать определённые эвристики. То есть делают всё то же самое, что они делали бы во время обычной стажировки в компании. С осени 2015 года в лаборатории начали проводить и научные исследования. Например, изучаются возможности применения нейронных сетей для решения тех или иных бизнес-задач.

И в честь дня рождения мы выкладываем список учебных материалов, которые рекомендованы к изучению нашим студентам на протяжении всего двухлетнего курса.
Читать дальше →

Интересные алгоритмы кластеризации, часть первая: Affinity propagation

Время на прочтение11 мин
Количество просмотров55K
Часть первая — Affinity Propagation
Часть вторая — DBSCAN
Часть третья — кластеризация временных рядов
Часть четвёртая — Self-Organizing Maps (SOM)
Часть пятая — Growing Neural Gas (GNG)

Если вы спросите начинающего аналитика данных, какие он знает методы классификации, вам наверняка перечислят довольно приличный список: статистика, деревья, SVM, нейронные сети… Но если спросить про методы кластеризации, в ответ вы скорее всего получите уверенное «k-means же!» Именно этот золотой молоток рассматривают на всех курсах машинного обучения. Часто дело даже не доходит до его модификаций (k-medians) или связно-графовых методов.

Не то чтобы k-means так уж плох, но его результат почти всегда дёшев и сердит. Есть более совершенные способы кластеризации, но не все знают, какой когда следует применять, и очень немногие понимают, как они работают. Я бы хотел приоткрыть завесу тайны над некоторыми алгоритмами. Начнём с Affinity propagation.

image

Читать дальше →

Скоро открытие ML Boot Camp III

Время на прочтение9 мин
Количество просмотров15K


15 февраля стартует Machine Learning Boot Camp III — третье состязание по машинному обучению и анализу данных от Mail.Ru Group. Сегодня рассказываем о прошедшем контесте и открываем тайны нового! Итак, в ходе предстоящего конкурса нужно будет угадать, останется ли участник в онлайн-игре или уйдет из нее. Выборки для задачи построены на двенадцати игровых признаках для 25000 пользователей. Естественно, все данные анонимизированы.
Читать дальше →

Приглашаем на Data Fest⁴ 11 и 12 февраля

Время на прочтение4 мин
Количество просмотров5.7K


Почти через две недели в нашем московском офисе состоится Data Fest⁴ — уже четвертая конференция, которая объединяет исследователей, инженеров и разработчиков, связанных с Data Science во всех его проявлениях. Вас ждет богатая программа, множество теоретических и практических секций. Подробности читайте под катом.
Читать дальше →

Разница между статистикой и наукой о данных

Время на прочтение8 мин
Количество просмотров14K
Здравствуйте, уважаемые читатели. Мы вновь попробуем посоветоваться с вами по поводу актуальности орейлевской новинки. На сей раз речь пойдет о статистике для Data Science.

Объем оригинала — 250 стр., дата выхода — 25 февраля.


В книге рассмотрены лаконичные кейсы с небольшим количеством графиков и примеров на языке R.

Чтобы размышлять и голосовать было интереснее — под катом найдете статью, автор которой попытался уловить и описать разницу между статистикой и Data Science
Читать дальше →

Random Forest: прогулки по зимнему лесу

Время на прочтение9 мин
Количество просмотров66K
Random Forest



1. Вступление


Это небольшое практическое руководство по применению алгоритмов машинного обучения. Разумеется, существует немалое число алгоритмов машинного обучения и способов математического (статистического) анализа информации, однако, эта заметка посвящена именно Random Forest. В заметке показаны примеры использования этого алгоритма для задач классификации и регрессии, а также даны некоторые теоретические пояснения.


Читать дальше →

Зачем нужно еще больше дата-центров: сегодня и завтра аналитики больших данных

Время на прочтение7 мин
Количество просмотров5.3K
Зачем хранить столько данных в строящихся все больше и больше дата центрах? Одна из сфер применения биг дата — прогнозная аналитика. Она отвечает на вопросы: что значат эти цифры о нас, где сейчас используется аналитика и что будет через три года?

Прогнозирование — основа оптимизации


Количество данных растет со скоростью, которую человеку невозможно вообразить. Данные ничто без анализа. Только невообразимое количество закодированной в единицы и нули информации. Зачем строят новые дата-центры? Что и почему хранится, а также обрабатывает в их глубинах?

Мы все наслышаны о контекстной рекламе, показ которой основывается на наших предпочтениях, о которых поисковые машины узнают из наших действий онлайн. Но вот про остальные сферы мало кто говорит широкой публике. А ведь кроме того, что биг дата в сумме с прогнозной аналитикой позволяет рекламодателям и банкам зарабатывать невероятные деньги, они помогают спасать человеческие жизни.


Читать дальше →