
Превращаем простой пример распознавания нот из лабораторных работ Школы синтеза цифровых схем в Enterprise. Используем компилятор Rust для RISC-V микроконтроллера YRV-Plus.
Программируемые логические интегральные схемы
Превращаем простой пример распознавания нот из лабораторных работ Школы синтеза цифровых схем в Enterprise. Используем компилятор Rust для RISC-V микроконтроллера YRV-Plus.
Одной из проблем первых сезонов Школы цифрового синтеза является малое число поддерживаемых плат, на которых можно легко и быстро повторить упражнение.
Чтобы справиться с данной проблемой, группа энтузиастов, под руководством Юрия Панчула, добавила поддержку множества плат и нескольких toolchain’ов от различных производителей FPGA.
В данном туториале, посвященном работе с FPGA от компании Gowin, я расскажу про то, как установить GOWIN EDA, о доступных платах и перефирии к ним и про работу со скриптами сборки примеров.
Хотелось бы выделить два основных свойства внутренней памяти ПЛИС:
удобство использования (+)
ограниченное количество (-)
Вот со вторым приходится всегда бороться, особенно если есть необходимость буферизации каких-то данных в достаточном количестве.
В этой статье мы рассмотрим какая внутренняя память есть в ПЛИС фирмы Intel/Altera и возможные варианты оптимизации её использования.
Внутри каждого современного телефона несколько микросхем ASIC. Ими наполнены автомобили, стойки в центрах обработки данных, датчики «умного дома», и вообще все электронные устройства. Без чипов ASIC был бы невозможен быстрый интернет, трехмерные игры и ускорители машинного обучения.
Микросхемы ASIC, их родственники FPGA и выросшие с ними технологии проектирования позволили закладывать сложные алгоритмы прямо в «железо». Они разрушили стереотип, что вычислительная система — это только процессор, память и программирование. В статье я расскажу, как развивались ASIC, какую роль в этом процессе сыграли FPGA и каким может быть «железо» будущего.
Пока весь мир развлекается с нейросетями и высокими технологиями, я решил исполнить студенческую мечту — собрать радио (а то как сапожник без сапог).
Во время курса по радиосигналам (по их приему и обработке) в моей голове представлялось это всё как конструктор, и я не видел в этом ничего сложного. По крайней мере, все модели, построенные в Mathcad и MATLAB, давали обнадеживающие результаты, но хотелось это всё проверить на практике и в качестве результата не увидеть первоначально промодулированную идеальную синусоиду, а услышать незнакомый аудиосигнал.
В протоколах передачи данных для стабильной работы используются кодеки, выбранные разработчиками с учётом следующих требований:
равномерное распределение 0 и 1 в канале
простота кодирования/декодирования
иметь небольшую избыточность
Один из самых распространённых протоколов, о которых думаю, если не каждый человек, то уж каждый инженер точно слышал, является Ethernet, который имеет большое количество стандартов. Он так же использует кодек, а именно 66b/64b, который широко известен в инженерных кругах. Вот небольшой список популярных протоколов, использующих этот кодек:
Ethernet (10,40,100G)
Common Public Radio Interface
Fibre Channel (10G, 16G)
Infiniband (FDR, EDR)
Thunderbolt
Разработка процессора и вообще программируемых микросхем — процесс сложный и длительный. От старта проектирования до получения первых образцов в кремнии проходит больше года. При этом ПО желательно писать и отлаживать параллельно процессу производства, чтобы оптимизировать сроки выхода продукта. Но как это делать, если «железо» еще не на руках или оно есть в очень ограниченном количестве, а нужно многим?
Спойлер: делать имитацию. О том, какие подходы существуют и как выжать из них максимум эффективности для имитации сложных многоядерных систем, рассказали инженеры-программисты отдела разработки системного ПО YADRO Светлана Бурлака и Александр Солдатов.
Продолжая тему самодельного простого интерфейса https://habr.com/ru/articles/769986/ , как всегда, интереса ради и просто так, разработал концепцию сети на описанном ранее протоколе нижнего уровня. Представленная сеть, может быть пригодна для связи между несколькими ПЛИС внутри печатной платы (ПП); связи между ПП внутри блока, а также связи отдельных блоков с длиной линии передачи между узлами сети до 50м, а может и более.
Шина Avalon-MM является одной из стандартных шин передачи данных, используемых в ПЛИС фирмы Intel. Использование этой шины в своих модулях для передачи данных существенно повышает их возможность повторного применения и повышает надежность проектов. Также упрощается интеграция модулей в проект с помощью Platform Designer.
Этой частью завершается серия статей, рассказывающих о разработке и тестировании сумматора с AXI-Stream интерфейсами. Мы покажем, как можно улучшить тестовое окружение за счет добавления возможности его настройки без повторной перекомпиляции исходников. Также мы модифицируем драйверы и мониторы AXI-Stream интерфейса, чтобы их можно было повторно использовать в других окружениях и проектах.
В предыдущей части был рассмотрен основной подход, применяемым для тестирования сложных цифровых устройств - constraint random testing. Мы узнали, как автоматизировать проверку корректности работы устройства с помощью сравнения его выходов с эталонной моделью. Тестовые окружения, работающие по такому принципу, называются self-test testbench. Мы увидели из каких компонентов строятся тестовые окружения и разработали структуру окружения для проверки сумматора с AXI-Stream интерфейсами. В этой статье мы перейдем от теории к практике и покажем, как реализовать это окружение на языке Verilog.
Чем хорош FPGA-хаб на Хабре это еще и тем что тема протокола valid/ready время от времени тут всплывает. И это действительно важно так как valid/ready является одним из основных протоколов организации управления потоком (flow-control). Понимание valid/ready для микроархитектора так же необходимо как необходимо понимание закона Ома электрику.
На прошлом занятии мы отработали концепцию очереди FIFO на микроархитектурном тренажере - hdlgadgets. В этот раз мы возьмем два FIFO буфера (которые образуют конвейер с valid/ready рукопожатиями) и будем менять flow-control логику конвейера.
Мы покажем что valid/ready это не только механизм передачи данных от одной очереди к другой, но еще и метод для организации разного рода логического функционала между очередями.
Если до этого момента вы не сталкивались с протоколом valid/ready, то будете приятно удивлены как легким движением руки (а если точнее, написанием пары строк на верилоге) мы можем реализовывать разного рода функционал взяв за основу конвейер из двух FIFO.
В предыдущей статье мы познакомились с основами работы AXI-Stream протокола и модифицировали наш сумматор, чтобы он был совместим с этим интерфейсом. Также было отмечено, что из-за увеличения сложности сумматора встает проблема в его тестировании. Напрямую генерировать все возможные входные воздействия достаточно сложно из-за большого количества их различных вариантов. Еще утомительней каждый раз вручную просматривать временные диаграммы в поисках ошибок. Нам нужен другой подход, и именно это мы будем обсуждать в этой статье.
Несколько лет назад мне довелось посетить университет Харви-Мадд, в котором работали Дэвид Харрис и Сара Харрис, авторы известного учебника "Цифровая схемотехника и архитектура компьютера". Cлучайно зашел в комнату, в которой сидела группа студентов и лежало нечто, напоминающее торпеду. Выяснилось, что это подводный робот, а студенты работают над общением этого робота с рыбами с помощью сонара (так я перевел для себя "IVER AUV for Sonar Mapping and Fish-Robot Interaction Modeling Projects"), и даже получили пару грантов на полмиллиона долларов.
Но чтобы студенты могли сделать что-нибудь полезное в обработке сигнала от сонара, им нужно знать кучу математики из области, которая в Америке называется DSP, а в России - ЦОС, или Цифровая Обработка Сигналов. Потом, в своих поездках по России я выяснил, что российские студенты в ЦОС тоже не лыком шиты.
Интереса ради сделал несколько простеньких модулей (аля платки для встраиваемых систем), про которые и хочу рассказать и поделиться исходниками, вдруг кому пригодится. Да, эта статья не про ПЛИСовую тематику, а что бы её немного разбавить, хотя кого я обманываю, модули же с ПЛИСами.
Про каждый модуль писать отдельно не вижу смысла, поэтому будет статья - сборник, а чтобы добавить наукообразия в текст, буду комментировать особенности разводки, если таковые будут. И предлагаю начать от сложного к простому.
Вторая статья из цикла, посвященного проектированию с использованием стандартного интерфейса AXI-Stream, а также отладке и документации проектов.
В данной статье описывается способ создания минималистичного образа sd карты c debian arm64 на примере отладочной платы с zynq ultrascale zcu106. Данный способ можно использовать для создания загрузочных образов других устройств с соответствующими изменениями. Битстрим, ядро Linux и dts для удобства разработки размещаются отдельными файлами.
Также описан способ загрузки по сети ядра Linux, dts и корневой файловой системы debian, который позволит сократить время разработки и ресурс карты памяти.