Все потоки
Поиск
Написать публикацию
Обновить
770.57

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

ИИ в сердце Африки. Как мы съездили в Руанду на крупнейшую конференцию по машинному обучению ICLR 2023

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров2.5K

Привет! Меня зовут Александр Коротин. Я — научный сотрудник AIRI и руководитель исследовательской группы Сколтеха. Область моих интересов — генеративные модели для переноса данных между доменами. Мы с моими коллегами добились больших успехов в повышении эффективности таких алгоритмов и представили наши результаты на ICLR 2023 — престижной конференции по искусственному интеллекту, которая проходила этой весной в Руанде (соответствующие статьи можно почитать здесь и здесь). О том, как прошло это мероприятие в самом центре Африки, рассказываю в тексте ниже.

Читать далее

Крестики-Нолики (Tic Tac Toe) с компьютером на Python. Мой первый шаг к Machine Learning. Часть 1

Уровень сложностиПростой
Время на прочтение10 мин
Количество просмотров21K

Всем привет. Я любитель Python и совсем недолго осваиваю язык всеми доступными способами. Моя цель - понять принципы машинного обучения и его взаимосвязь с нейросетью. Никакого опыта в IT не имел, тем не менее постараюсь излагать общепринятой терминологией, не судите строго. Моя основная профессия (оперирующий травматолог, кандидат наук) не менее сложная и далека от IT, но для упрощения работы в нее все больше внедряются AI и ML. Мною движет лишь интерес к современным технологиям, программированию.

В первой части покажу только основные этапы создания игры, где пользователь выбирает роль (Х или О), играя с компьютером. Поиск в сети Python аналогов дал только несколько вариантов игры с рандомным ответом компьютера. Мой целью в этой части стало самостоятельно научиться оценивать текущую позицию на поле "Крестики-Нолики" и подбирать оптимальный вариант следующего хода компьютера. К слову, уже перед окончанием статьи нашел готовую web-игру в google, где уже реализован такой подход. Тем интереснее было проверить себя и поделиться "изобретением колеса, но по-своему".

Во второй части попробую прикрутить к игровой логике другой подход - машинное обучение на основе большого числа сыгранных партий компьютером с самим собой.

Кому будет полезен материал: любителям Python, логики, алгоритмов. В финальном коде все переменные, функции и действия прокомментированы на английском.

Крестики-Нолики с компьютером на Python

Фантастические pandas

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров2.9K

Размышления о том, как перейти от тяжёлых мыслей о конкуренции в IT к любви к фантастическим мишкам и восклицательным знакам, если правильно и вовремя импортируешь нужные библиотеки.

Читать далее

PINN (Physics-informed neural networks) и с чем их едят

Уровень сложностиСредний
Время на прочтение4 мин
Количество просмотров9.7K

Известный, и во многом печальный, факт: Реальные физические системы обсчитываются сложными численными методами за очень большое время на суперкомпьютерах.

Менее известный, но более радостный, факт: Есть нейронные сети, которые делают это быстрее (пусть и с меньшей точностью).

Читать далее

Линейная регрессия: прямая, разделяющая плоскость на точки 2 классов

Время на прочтение6 мин
Количество просмотров2.5K

В этой статье мы напишем программу, которая будет проводить прямую так, чтобы красные точки были в одной полуплоскости, а зеленые - в другой. Мы будем использовать Python и библиотеку tkinter.

Читать далее

Эволюция метрик качества машинного перевода. Часть 2

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров6.6K

Как правильнее всего измерять качество машинного перевода? Многие слышали о BLEU, но на самом деле метрик много. В этой статье расскажем, какие существуют метрики, как они эволюционировали и какие сегодня наиболее адекватны. Часть 2: референсные нейросетевые метрики.

Читать далее

Визуализация реальных масштабов проклятия размерности

Уровень сложностиСредний
Время на прочтение11 мин
Количество просмотров7.5K

Представьте себе набор данных, состоящий из некоторого количества наблюдений. У каждого наблюдения имеется N признаков. Если преобразовать все эти признаки в их числовое представление, то можно будет сказать, что каждое из наблюдений — это точка в N‑мерном пространстве.

Если N — величина небольшая — взаимоотношения между точками будут именно такими, какими их можно представить на интуитивном уровне. Но иногда N достигает огромных значений. Это может произойти, например, когда множество признаков создают посредством прямого кодирования или чего‑то подобного. Для очень больших значений N наблюдения ведут себя так, как если бы они были бы представлены разреженными данными, или так, как если бы расстояния между ними были бы несколько больше, чем можно было бы ожидать.

Это — реальное явление. По мере роста N, при условии, что всё остальное не меняется, объём части N‑мерного пространства, содержащий наблюдения, тоже, в некотором смысле, увеличивается (или, как минимум, увеличивается количество степеней свободы). Увеличиваются и евклидовы расстояния между наблюдениями. Группа точек становится всё более разреженной структурой. Это — геометрическая база для такого понятия, как «проклятие размерности». Подобные изменения в данных влияют на поведение моделей и на приёмы работы, применяемые к наборам данных.

Многое может пойти не так, как ожидается в том случае, если число признаков очень велико. В ситуациях, когда признаков больше, чем наблюдений, обычно возникает переобучение моделей. В многомерном пространстве ухудшается эффективность любых методов, предусматривающих перебор данных (например — GridSearch), так как для того, чтобы уложиться в одни и те же линейные интервалы, нужно будет сделать больше попыток.

Читать далее

Вышел Savant 0.2.4: компьютерное зрение на базе глубокого обучения для Nvidia Jetson и dGPU

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров1.9K

После месяца напряженной работы мы выпустили новую версию Savant (0.2.4), с новыми функциями и примерами использования.

Savant — это фреймворк компьютерного зрения с открытым исходным кодом для создания приложений компьютерного зрения на базе нейронных сетей, работающий на стеке Nvidia. Он упрощает разработку динамических, отказоустойчивых конвейеров видео‑аналитики, использующих рекомендованные Nvidia инструменты для центров обработки данных и граничных ускорителей.

Savant построен на базе DeepStream и предоставляет высокоуровневый уровень абстракции для быстрой разработки конвейеров компьютерного зрения на базе Nvidia DeepStream.

Читать далее

Графовые нейронные сети GNN в самообучающемся искусственном интеллекте

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров7.7K

30 мая 2023 года была на https://arxiv.org/abs/2305.19801 была опубликована статья Predicting protein stability changes under multiple amino acid substitutions using equivariant graph neural networks. Но мне GNN интересны по другой причине. В 2016 году меня посетила мысль о создании самообучающегося искусственного интеллекта. Первые черновики описывающие его архитектуру начали появляться в 2018 году. Тогда я делал ставку на GAN и генетические алгоритмы. Архитектура единицы "мозга" тогда выглядела так

Читать далее

Запуск блокнотов, запрещённых Google Colab TOS или SD webui в колабе без ограничений

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров11K

Производные Stable Diffusion набрали огромную популярность, что не могло обойти стороной нагрузку серверов Google Colab, которые они на бесплатной основе предоставляли энтузиастам в сфере ML.

Однако, огромный онлайн на серверах гугла, связанный с бесконечным количеством отаку, желающих бесплатно рисовать аниме персонажей на свой вкус и цвет не мог остаться незамеченным, как следствие ограничения не заставили себя долго ждать (на самом деле заставили - почти полгода).

В общем, пару месяцев назад таки появился в правилах использования Colab пунктик об Webui`ях разных. Но мы пользователи опытные, знаем что не пойман - не вор. Однако, всевышние силы посылают всплывающие окна, тем самым даже думать нам запрещают об нарушении правил!

Читать далее

Большие данные и огромные сомнения

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров3.7K

Беллетристические размышления не-айтишника о том, бывает ли много данных, когда решил научиться чему-то новому, как побороть сомнения в своих способностях, с благодарностью вспомнить былое и крутануть в очередной раз шестерёнку.

Читать далее

Игорь, намути мне ChatGPT

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров10K

«В этой статье пойдет речь о том, как сделать свой интерфейс для ChatGPT.» — Так бы я начал этот текст еще пару месяцев назад, когда окончательно устал плясать с бубном вокруг турецких банков, фальшивых европейских номеров и рытья тоннелей к своим серверам на западе. Казалось, технологии, и интернет в частности, должны были сблизить людей, помочь нам осознать себя частью целого, но история пошла по другому пути, и теперь старые технологии ограничивают доступ к новым. Впрочем, если одни двери закрыты, всегда можно сделать другие двери в своей дверной мастерской. А потом вкорячить их в какую-нибудь дыру. Ну вы поняли.

Читать далее

Нейронные сети врываются в медицину

Уровень сложностиСредний
Время на прочтение12 мин
Количество просмотров13K

Доброго времени суток habr, на связи Николай Иванов, студент-магистр 1 курса Сколтеха факультета Data Science. С почином, так как это моя первая, и, надеюсь, не последняя статья на habr. С того момента как я познакомился с областью Deep Learning прошло уже около двух лет. С самого начала мне была интересна область обработки естественного языка (Natural Laguage Processing, NLP), о некоторых задачах которой и результатах я попробую рассказать в этой статье. В мае 2023 года начался мой путь в Sber AI Lab в замечательном центре медицины. Мой рассказ будет в какой-то степени сравнением того что было сделано до меня и того, какие идеи мы развили, что получилось, а что не получилось. Хочу сослаться на замечательную статью Даниила (https://habr.com/ru/articles/711700/), который использовал модель RuBioBERTa для задач из MedBench. Я же буду использовать другое решение, посмотрим, чем оно лучше, чем хуже и вообще насколько подходит для NLP-задач в медицине.


Немного оффтопа

Я очень рад, что каждый месяц появляются новые, более сложные и интересные архитектуры, реализующие смелые идеи, которые двигают вперёд области Deep Learning, NLP и Computer Vision (CV), но сколько из них реально используются в прикладных задачах? Вот оценка внедрения AI решений по странам (на основании отчёта IBM Global AI Adoption Index 2022):

Читать далее

Ближайшие события

Синтез обучения с подкреплением и классического планирования: как выиграть соревнование CVPR Habitat Challenge 2023

Уровень сложностиСложный
Время на прочтение16 мин
Количество просмотров2.8K

Всем привет! Меня зовут Алексей Староверов, работаю научным сотрудником в AIRI и в составе нашей команды (вместе с Кириллом Муравьевым, Татьяной Земсковой, Дмитрием Юдиным и Александром Пановым) мы выиграли соревнование Habitat Challenge, которое проводилось в рамках крупнейшей конференции по компьютерному зрению CVPR 2023. Мы смогли эффективнее других команд научить робота навигироваться до целевых объектов в новых помещениях с использованием только RGB-D камеры, датчика GPS и компаса. Сейчас это является очень важной задачей при создании роботов-помощников, выполняющих задачи по инструкциям на естественном языке. В этой заметке я расскажу, как это у нас получилось.

Читать далее

Как с помощью ChatGPT писать SQL-запросы. Несколько кейсов

Время на прочтение6 мин
Количество просмотров19K

Привет, Хабр! Меня зовут Анастасия Иванова, я работаю в МТТ (входит в экосистему МТС) техническим писателем МТС Exolve. В статье расскажу о том, как ChatGPT может сэкономить время и усилия начинающего специалиста по SQL.

Нейросеть может быть весьма полезной для тех, кто плохо знаком с языком структурированных запросов. Пользователю нужно просто сказать нейросети, что требуется сделать, и она сгенерирует соответствующий SQL-запрос под его нужды. Таким образом, ChatGPT помогает в работе, а также позволяет изучать SQL и эффективнее использовать возможности языка. Подробности — под катом.

Читать далее

Как оптимизировать процесс привлечения клиентов B2B с помощью методов Продвинутой Аналитики

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров3.3K

Мы, как Банк, привлекаем новых корпоративных клиентов по всей сети отделений Альфа-Банка в регионах/городах РФ. И чтобы это делать эффективно, требуются инструменты, которые позволят оценивать результат тех или иных управленческих действий в разрезе конкретных регионов нашего присутствия. У каждого региона есть определенная специфика: географическая, экономическая, рыночная. И нам необходимо понимать: сколько наших продуктов мы можем потенциально продать в этом регионе и получить новых клиентов, и какой ресурс для этого требуется. 

Иначе говоря — бизнесу необходим инструмент эффективного управления численностью менеджеров с точки зрения того, сколько клиентов может привести каждый менеджер, и как это изменит рыночные показатели Альфы в динамике в среднесрочном и долгосрочном периоде. Например, оправдано ли стратегически решение об экспансии в регион на горизонте 3 лет? Удастся ли компенсировать понесённые затраты за счет роста доли рынка и количества активной клиентской базы? Эту задачу можно решить с помощью методов продвинутой аналитики.

В статье мы поделимся примером первого практического применения Продвинутой Аналитики в процессах стратегического бизнес-планирования численности ресурсов Сети для привлечения клиентов Юридических Лиц.

Читать далее

Камера, нейронки и дымящийся микро-ПК: дешевая и практичная альтернатива радару

Время на прочтение9 мин
Количество просмотров5.4K

В этом посте мы расскажем, как дошли до идеи отказа от использования радара при фотовидеофиксации нарушений. А также о том, как: подружили камеры с сверточными нейросетями, научили эту дружную «компанию» отличать грузовики от легковушек, точно фиксировать скорость и направление движения, а заодно засекать проезды на красный свет.

Читать далее

Аннотирование повреждений автомобилей для обучения искусственного интеллекта

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров2K

Благодаря доступности систем компьютерного зрения на основе ИИ, способных автоматизировать большую часть процессов, в последние годы активно развивается сфера визуального контроля, связанного с технологиями страхования. При помощи мобильных приложений или веб-сайтов пользователи могут выполнять удалённую оценку повреждений и мгновенно получать расчёт цены, что упрощает процесс и сильно снижает стресс пользователей. Эта сфера уже охватила не только оценку повреждений транспорта, но и другие виды собственности, например, недвижимость.

Однако обучение систем визуального контроля при помощи ИИ имеет свои сложности, поскольку требует постоянного наполнения высококачественными и разнообразными данными. Из-за расширения области действия таких сервисов на разные регионы стало необходимым получение из каждого региона данных, аннотированных в точности согласно таксономии каждой страховой компании.
Читать дальше →

Мнение большинства для разметки данных в задачах компьютерного зрения

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров3.5K

Многие прикладные задачи из области компьютерного зрения требуют от разработчиков создания собственных наборов данных, которые можно своевременно обновлять и адаптировать: увеличивать количество классов и сэмплов или делать сэмплы более разнородными по тем или иным признакам. Кроме того, для некоторых задач необходимы доменные и достаточно специфичные данные. Например в SberDevices, для реализации управления умными устройствами с помощью жестов, необходим датасет, на изображениях которого люди показывают жесты перед камерой; для бьютификации в Jazz — фотографии людей на веб-камеру или селфи. Необходимость постоянно создавать и поддерживать собственные наборы данных требует автоматизации их сбора и разметки.

Читать далее

Контроль за дрейфами предсказательных моделей и Popmon

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров8.7K

Привет, Хабр!

На связи участник профессионального сообщества NTA Иван Попов.

В сфере бизнеса зачастую используются модели машинного обучения для прогнозирования различных показателей, однако их предсказательная сила может снижаться с течением времени. В данном посте расскажу, что такое дрейф моделей, почему важно следить за ними, и как это можно сделать с помощью библиотеки Popmon.

Как держать дрейф модели под контролем?

Вклад авторов