
Deep Learning: Transfer learning и тонкая настройка глубоких сверточных нейронных сетей

Основа искусственного интеллекта
Представляем первую статью в серии, задуманной, чтобы помочь быстро разобраться в технологии глубокого обучения; мы будем двигаться от базовых принципов к нетривиальным особенностям с целью получить достойную производительность на двух наборах данных: MNIST (классификация рукописных цифр) и CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).
Когда речь заходит про машинное обучение, обычно подразумевают большие объемы данных — миллионы или даже миллиарды транзакций, из которых надо сделать сложный вывод о поведении, интересах или текущем cостоянии пользователя, покупателя или какого-нибудь аппарата (робота, автомобиля, дрона или станка).
Однако в жизни обычного аналитика самой обычной компании много данных встречается нечасто. Скорее даже наоборот — у вас будет мало или очень мало данных — буквально десятки или сотни записей. Но анализ все же нужно провести. Причем не какой попало анализ, а качественный и достоверный.
Зачастую ситуация усугубляется еще и тем, что вы без труда можете нагенерить для каждой записи много признаков (чаще всего добавляют полиномы, разницу с предыдущим значением и значением за прошлый год, one-hot-encoding для категориальных признаков и т.п.). Вот только совсем нелегко разобраться, какие из них действительно полезны, а какие только усложняют модель и увеличивают ошибки вашего прозноза.
Для этого вы можете воспользоваться методами байесовой статистики, например, Automatic Relevance Determination.
В рамках каждой школы GoTo происходит много активностей, школьниками реализуются десятки удачных и не очень проектов. К сожалению, нам не удается рассказать о каждом проекте или происшествии, но попытаться поделиться отдельными успехами стоит. Поэтому мы и начинаем цикл статей от учеников о своих успехах и проектах в рамках наших школ.
Этим летом один из партнёров – компания E-Contenta – предложила задачу создания рекомендательной системы новостного портала одного из телеканалов. Ребята из компании преподавали на направлении Анализ данных и машинное обучение, да и задача всем показалась довольно интересной – помимо реальной необходимости такого рода разработок, задача была еще и довольно уникальной – методы рекомендации новостей в большинстве отличаются от методов рекомендации, допустим, фильмов.
За её решение взялись 2 ученика июньской школы: 16-летний Творожков Андрей из Москвы и 14-летний Всеволод Жидков из Воткинска. Они же и подготовили краткое описание задачи и ее решения, которое мы публикуем в этой статье под катом.