Как стать автором
Поиск
Написать публикацию
Обновить
768.55

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Расширение функциональных возможностей Splunk – это просто

Время на прочтение7 мин
Количество просмотров12K


Меня зовут Ткачев Константин, я работаю архитектором прикладных решений.

Предисловие


Хочу рассказать о том, как можно расширить имеющуюся функциональность платформы Splunk на примере библиотеки для машинного обучения scikit-learn (sklearn), реализованной в Python. В нашем примере мы будем использовать алгоритм «деревьев решений». Данный алгоритм не входит в стандартную поставку Splunk и ниже я покажу, что подключить его для реализации прикладной задачи можно, выполнив достаточно простые действия.
Читать дальше →

Заметки с MBC Symposium: применение deep learning в моделировании мозга

Время на прочтение6 мин
Количество просмотров11K

Посетил Стенфордский симпозиум, посвященный пересечению deep learning и neurosciencе, получил массу удовольствия.


image


Рассказываю про интересное — например, доклад Дэна Яминса о применении нейросетей для моделирования работы зрительной коры головного мозга.

Осторожно, хардкор

Как я писал книгу 'Python Machine Learning'

Время на прочтение7 мин
Количество просмотров44K
Здравствуйте, уважаемые хабровчане!

В настоящее время мы всерьез намерены в обозримом будущем порадовать вас серьезной книгой по машинному или глубинному обучению. Среди книг, вызвавших у нас наибольший интерес, особого упоминания заслуживает работа Себастьяна Рашки "Python Machine Learning"



Предлагаем почитать, что сам автор рассказывает об этой книге. Мы позволили себе сократить статью практически вдвое, так как вся ее вторая часть посвящена тонкостям писательского труда и оформления книги, а тематические тонкости и актуальность темы рассмотрены в самом начале. Надеемся, что вам понравится текст, а нам — результаты опроса.
Читать дальше →

Как выиграть в игру с неизвестными правилами?

Время на прочтение4 мин
Количество просмотров33K
Привет, Хабр! Если кратко, приглашаем всех поучаствовать в необычном конкурсе по машинному обучению Black Box Challenge, который проходит при поддержке DCA.


Условия просты: нужно написать бота, который умеет играть в игру с неизвестными правилами. Победители получат ценные призы: от Xbox One до 300 тыс. рублей за первое место и возможность попасть в крутые компании на позицию специалиста по машинному обучению.

Ниже мы расскажем о соревновании в формате вопрос-ответ.
Читать дальше →

Нейросети vs вычисления на глазок

Время на прочтение1 мин
Количество просмотров13K

Сегодня я узнал, что люди могут на глаз прикидывать ранг матрицы!
(напомню, ранг — это количество линейно независимых строк или столбцов)


image


Типа, вот смотрят на вот это и говорят, что ранг —


ну! ну!

3


Как же устоять и не попробовать обучить это делать нейросеть, подумали укурки cтуденты из Carnegie Mellon?

Читать дальше →

Пятничный формат: Как работает Netflix

Время на прочтение10 мин
Количество просмотров26K


В нашем блоге на Хабре мы рассказываем не только про технологические аспекты работы облачного сервиса 1cloud, но и затрагиваем вопросы огранизации рабочего процесса. Например, совсем недавно мы обсуждали работу тех. поддержки.

Сегодня мы решили разнообразить пятничную ленту Хабра разбором материалов по теме устройства сервиса Netflix, поставляющего зрителям фильмы и сериалы на основе технологий потокового мультимедиа.
Читать дальше →

Обзор дескрипторов изображения Local Binary Patterns (LBP) и их вариаций

Время на прочтение12 мин
Количество просмотров17K
Добрый день, хабровчане. Приглашаю под кат программистов, интересующихся компьютерным зрением и обработкой изображений. Возможно, вы пропустили несложный но эффективный математический инструмент для низкоуровневого описания текстур и задания их признаков для алгоритмов машинного обучения.
Мне интересно!

Байесовская нейронная сеть — теперь апельсиновая (часть 2)

Время на прочтение16 мин
Количество просмотров38K
Как вы думаете, чего в апельсине больше — кожуры, или, хм, апельсина?



Предлагаю, если есть возможность, пойти на кухню, взять апельсин, очистить и проверить. Если лень или нет под рукой — воспользуемся скучной математикой: объем шара мы помним из школы. Пусть, скажем, толщина кожуры равна от радиуса, тогда , ; вычтем одно из другого, поделим объем кожуры на объем апельсина… получается, что кожуры что-то около 16%. Не так уж мало, кстати.

Как насчет апельсина в тысячемерном пространстве?

Пойти на кухню на этот раз не получится; подозреваю, что формулу наизусть тоже не все знают, но Википедия нам в помощь. Повторяем аналогичные вычисления, и с интересом обнаруживаем, что:

  • во-первых, в тысячемерном гиперапельсине кожуры больше, чем мякоти
  • а во-вторых, ее больше примерно в 246993291800602563115535632700000000000000 раз

То есть, каким бы странным и противоречивым это ни казалось, но почти весь объем гиперапельсина содержится в ничтожно тонком слое прямо под его поверхностью.

Начнем с этого, пожалуй.

Читать дальше →

Стеганография в акроконструкциях. Алгоритм DANTSOVA

Время на прочтение7 мин
Количество просмотров14K
— Потом решила избавиться. Во!
— Ей!.. так хорошо?
— А, без разницы...

Давно хотел опубликовать этот just4fun проектик по стеганографии, но что-то не было времени.
И вот и время и повод нашелся.
К тому же пятница!



Решил я как-то раз реализовать стеганографию в акроконструкциях.
Для наглядности сделать, как в акростихах, только автоматизировать процесс и строить акропредложения автоматически. Короче говоря, повторить задумку Тритемия, только программным способом ;)

Интерфейс итоговой программы прост:
  1. пользователь вводит сообщение на русском языке;
  2. программа выдает акротекст. (Это текст, по первым буквам каждого слова которого можно собрать исходное сообщение).


Например на запрос "привет хабр!" программа написала текст: "потом решила избавиться во ей так хорошо а без разницы". Знаки препинания программа пока не расставляет — это делает пользователь на свое усмотрение.

Конечно далеко до naitive русского языка, но для just4fun проекта, написанного на коленке за пару вечеров, я думаю сгодиться…

Алгоритм обучается на бесчисленных романах Дарьи Донцовой. Именно поэтому он в честь нее и назван — DANTSOVA.

Кому интересно, как все это работает, прошу под кат!

Дальше читать

Прогнозирование посещаемости объявлений по содержанию

Время на прочтение6 мин
Количество просмотров7.9K

Введение


Предсказуемая, но такая долгожданная мной смена времен года происходит прямо сейчас. Многие из знакомых предвкушают начало дачного сезона и активно обновляют свой инвентарь. Список очень нужных вещей, которые необходимо купить превышает все мыслимые бюджеты на десять лет вперед(ведь еще надо предусмотреть аренду товарного поезда для доставки всего необходимого) и на помощь приходят онлайн доски размещения объявлений. В надежде сэкономить, вы определяете список вещей, которые вам уже не пригодятся, размещаете их на продажу, и в предвкушении выгодной сделки начинаете ждать звонков и… Их нет. В чем дело? Оказывается, разборчивого покупателя интересует не только тот факт, что «газонокосилка находится в отличном состоянии», но и мощность двигателя, направление выброса травы, положение вала, время наработки и т.д. Не являясь спецом в садовом оборудовании, как вы могли все это предусмотреть? И вот вы начинаете просматривать другие объявления на схожую тему, а время идет и ваш человек по дачной логистике уже заказал для перевозок баржу и два грузовых самолета. На примере одной из рубрик доски объявлений мы рассмотрим построение прогнозной модели, которая помогла бы выяснить, что именно хотели бы узнать люди из описания вашего предложения, а так же дать очень примерную оценку числа переходов на ваше объявление.
Читать дальше →

Как навести порядок в почтовом ящике с помощью нейронной сети. Часть 2

Время на прочтение9 мин
Количество просмотров8.3K
image

В нашем блоге мы много пишем о создании email-рассылок и работе с электронной почтой. В современном мире люди получают множество писем, и в полный рост встает проблема с их классификацией и упорядочиванием почтового ящика. Инженер из США Андрей Куренков в своем блоге рассказал о том, как решил эту задачу с помощью нейронной сети. Мы решили осветить ход этого проекта — несколько дней назад опубликовали первую часть рассказа, а сегодня представляем вашему вниманию его продолжение.
Читать дальше →

Русский нейросетевой чатбот

Время на прочтение5 мин
Количество просмотров81K
О чатботах, использующих нейронные сети я уже писал некоторое время назад. Сегодня я расскажу о том как я попробовал сделать полномасштабный русскоязычный вариант.



Обучаемые диалоговые системы приобрели в последнее время неожиданную популярность. К сожалению, все что сделано в рамках нейросетевых диалоговых систем, сделано для английского языка. Но сегодня мы восполним этот пробел и научим модель говорить по русски.

Читать дальше →

Как навести порядок в почтовом ящике с помощью нейронной сети. Часть 1

Время на прочтение6 мин
Количество просмотров22K
image

В нашем блоге мы много пишем о создании email-рассылок и работе с электронной почтой. Мы уже обсудили сложности борьбы со спамом, будущее email, вопросы защиты почтовой переписки, а также техники работы с email, применяемые руководителями крупных ИТ-компаний. 

В современном мире люди получают множество писем, и в полный рост встает проблема с их классификацией и упорядочиванием почтового ящика. Инженер из США Андрей Куренков в своем блоге рассказал о том, как решил эту задачу с помощью нейронной сети. Мы решили осветить ход этого проекта и представляем вам первую часть рассказа.
Читать дальше →

Ближайшие события

Как нельзя делать рекомендации контента

Время на прочтение9 мин
Количество просмотров23K

Во время общения с медиа мы в Relap.io часто сталкиваемся с массой заблуждений, в которые все верят, потому что так сложилось исторически. На сайте есть блоки типа «Читать также» или «Самое горячее» и т.п. Словом, всё то, что составляет обвязку статьи и стремится дополнить UX дорогого читателя. Мы расскажем, какие заблуждения есть у СМИ, которые делают контентные рекомендации, и развеем их цифрами.
 
HAbr1
 
 
Читать дальше →

Отчёт с конференции Data Fest

Время на прочтение3 мин
Количество просмотров12K
image

В начале марта в офисе Mail.Ru Group прошла двухдневная конференция Data Fest2, посвящённая всевозможным актуальным вопросам в сфере анализа данных, как практическим, так и теоретическим. Кроме того, в рамках конференции прошёл хакатон, участники которого пытались как можно точнее предсказать результаты турнира по Dota 2, а также питч-постер сессия для исследователей, на которой были представлены различные разработки и исследовательские проекты. Предлагаем вашему вниманию видеозаписи всех выступлений на Data Fest2.
Читать дальше →

Deep Reinforcement Learning (или за что купили DeepMind)

Время на прочтение5 мин
Количество просмотров43K
Продолжаю рассказывать про успехи DeepMind. Этот пост про их первое известное публике достижение — алгоритм, который обучается играть в игры Atari, не зная об играх ничего, кроме пикселей на экране.

Вот, собственно, главный артефакт (если вы это видео не видели, посмотрите обязательно, оно взрывает мозг)


Вот столько примерно публично известно про компанию, когда ее покупают за полмиллиарда долларов.
Давайте разбираться, как это работает

MCMC-сэмплинг для тех, кто учился, но ничего не понял

Время на прочтение15 мин
Количество просмотров34K
Рассказывая о вероятностном программировании и Байесовской статистике, я обычно не уделяю особого внимания тому, как, на самом деле, выполняется вероятностный вывод, рассматривая его как некий «чёрный ящик». Вся прелесть вероятностного программирования заключается в том, что, на самом деле, для того, чтобы строить модели, не обязательно понимать, как именно делается вывод. Но это знание, безусловно, весьма полезно.


Как-то раз я рассказывал о новой Байесовской модели человеку, который не особенно разбирался в предмете, но очень хотел всё понять. Он-то и спросил меня о том, чего я обычно не касаюсь. «Томас, — сказал он, — а как, на самом деле, выполняется вероятностный вывод? Как получаются эти таинственные сэмплы из апостериорной вероятности?».
Читать дальше →

Линейные модели: простая регрессия

Время на прочтение7 мин
Количество просмотров76K
В прошлый раз мы подробно рассмотрели многообразие линейных моделей. Теперь перейдем от теории к практике и построим самую простую, но все же полезную модель, которую вы легко сможете адаптировать к своим задачам. Модель будет проиллюстрирована кодом на R и Python, причем сразу в трех ароматах: scikit-learn, statsmodels и Patsy.
Читать дальше →

Учимся у машинного обучения (субботнее, философское)

Время на прочтение5 мин
Количество просмотров14K
Машинное обучение втягивает в свою орбиту все новых энтузиастов. Таким энтузиастом стал я несколько лет назад. Я – представитель одной из групп «примкнувших», экономист с практикой работы с данными. Данные – всегда проблема в экономической науке (таковой и осталась, впрочем) и было легко купиться на мантру «большие данные». От больших данных было легко перейти, вслед за Гарнтером в 2016, к машинному обучению.



Чем больше занимаешься этой темой, тем более интересно становится, особенно в свете происходящих предсказаний типа наступления эры роботов, умных машин и т.п. И это не удивительно, что такие машины будут созданы, т.к. эволюция показывает, что человек учится расширять себя, создавая симбиоз человек-машина. Бывает идешь у своего забора, торчит гвоздь. Ох как трудно его забить без молотка. А молотком – раз и там. Поэтому не удивительно, что появляются такие же «помощники» для мозговой деятельности.

По ходу изучения темы, я не переставал думать о том, что, кажется, машинное обучение объясняет, как устроен наш разум. Ниже я перечислю уроки, которые я извлек о человеке, изучая машинное обучение. Не претендую на правоту, приношу извинения, если все это очевидно, буду рад, если материал позабавит, или если будут контр-примеры, чтобы начать (опять) жить верой в «непонятное». Кстати, у Вышки есть курс, где машинное обучение используется для понимания работы мозга.
Читать дальше →

AlphaGo на пальцах

Время на прочтение5 мин
Количество просмотров62K
Итак, пока наши новые повелители отдыхают, давайте я попробую рассказать как работает AlphaGo. Пост подразумевает некоторое знакомство читателя с предметом — нужно знать, чем отличается Fan Hui от Lee Sedol, и поверхностно представлять, как работают нейросети.
Читать дальше →

Вклад авторов