Обновить
126.35

Natural Language Processing *

Компьютерный анализ и синтез естественных языков

Сначала показывать
Порог рейтинга
Уровень сложности

GigaSearch или Поисковая система на GigaChat

Уровень сложностиСредний
Время на прочтение4 мин
Охват и читатели10K

Галлюцинации — это явление, которое до недавнего времени было привилегией человеческого сознания. Однако, с развитием текстовых генеративных моделей, таких как GigaChat и ChatGPT, возникла возможность наблюдать подобные "иллюзии" и в мире искусственного интеллекта.

Есть случаи, когда галлюцинации генеративной модели вполне уместны. Например, если вы попросите модель сгенерировать детскую сказку, то наличие в ней выдуманных персонажей и событий будет весьма кстати и понравится малышу.

Но мы точно не хотим получать выдуманную информацию про реальных людей или события. Кому интересно почитать о том, как мы боремся с галлюцинациями в GigaChat — добро пожаловать под кат.

Читать дальше

Классификация авторства текстов. Обзор Kaggle соревнования «H2O Predict the LLM»

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели2.5K

В день, когда Сэм Альтман в темной одежде на темном фоне рассказывал миру о запуске GPT-4-Turbo, в те же самые минуты на Kaggle завершалось небольшое, но любопытное соревнование “Predict the LLM”. Цель – узнать автора по тексту. Авторами текстов выступили 7 анонимных больших языковых моделей…  

Читать далее

Анонсы конференции OpenAI Dev Day: быстрее, дешевле, умнее

Время на прочтение7 мин
Охват и читатели4.6K

Не так давно все с нетерпением ждали новинок от Apple, однако сегодня внимание мира приковано к другому событию – OpenAI Dev Day, презентации последних разработок ChatGPT. Несмотря на скромную подачу, в стиле “от разработчиков к разработчикам” ее влияние на будущее технологий стало масштабным с первого дня.

В соцсетях царили предположения о релизах API для новых моделей и снижении стоимости GPT-4, о чем Сэм Альтман, CEO OpenAI, говорил еще летом. И предвкушение оправдалось – результаты превысили ожидания кратно.

Начнём с того, что не было на конференции: GPT-5 не анонсировали, так что завтра Скайнет нас ещё не захватит — можно вздохнуть свободнее. А теперь — к тому, что было представлено и что это значит для нас всех?

GPT-4-turbo c большим контекстом
Старые модели стали еще доступней
Обновление знаний до апреля 2023 года
Whisper v3 и синтез речи
Ассистенты, маркетплейс

Под КАТом больше деталей и новостей.

Читать далее

Общаемся с базой знаний: как мы улучшили точность генеративных ответов LLM с помощью собственного RAG

Уровень сложностиПростой
Время на прочтение7 мин
Охват и читатели12K

Одна из основных проблем при использовании больших языковых моделей это практически неустранимые галлюцинации, возникающие при ответах на вопросы по загруженным документам. Задача "поговорить со своими документами" возникает очень часто, и как правило, она решается с помощью промптинга - вы загружаете вашу статью, договор или другой документ и пишете промпт "Ответь на вопрос по тексту:". Этот способ работает, но у него есть существенные недостатки: размер документа ограничен 1-3 страницами, рандомное возникновение галлюцинаций - неправильных ответов, выглядящих правдоподобно.

В этой статье мы показываем работающие кейсы и синергию подходов, реализованных нами в рамках разработки агента вопросно ответной системы - FractalGPT QA агента. В частности, с помощью алгоритма Fractal answer synthesis и интерпретируемого ИИ нам удается существенно снизить % галлюцинаций и стабильно сильно повысить точность и полноту ответов. Если читать теорию не охота - можно сразу промотать на кейсы.FractalGPT QA агента доступен в закрытой бете, запрос на тест QA системы по базе знаний можно оставить тут.

Читать далее

Объясняем простым языком, что такое трансформеры

Уровень сложностиПростой
Время на прочтение12 мин
Охват и читатели95K

Облако предлагает много возможностей для развития ИИ. С помощью облачных вычислений проще масштабировать ML-модели, повышать точность обучения и предоставлять данные удаленно пользователям. Однако масштабное развертывание ML-моделей требует понимания архитектуры нейронных сетей. 

Один из важнейших инструментов машинного обучения — трансформеры. Популярность трансформеров взлетела до небес в связи с появлением больших языковых моделей вроде ChatGPT, GPT-4 и LLama. Эти модели созданы на основе трансформерной архитектуры и демонстрируют отличную производительность в понимании и синтезе естественных языков. 

Хотя в сети уже есть хорошие статьи, в которых разобран принцип действия трансформеров, большинство материалов изобилует запутанными терминами. Мы подготовили перевод статьи, в которой без кода и сложной математики объясняют современную трансформерную архитектуру.

Читать далее

Ад Топинамбура

Уровень сложностиПростой
Время на прочтение7 мин
Охват и читатели6.2K

Нейросети все прочнее укрепляются в нашей жизни. Многие уже попробовали писать с помощью нейросети сочинения на заданную тему, и её тексты становятся всё лучше и лучше.

Если брать визуальные возможности нейросетей, то последняя версия GPT-4V(ision) научилась распознавать изображения. С помощью некоторых сетей, обрабатывающих видео, уже создаются клипы на музыкальные произведения. Конечно, видеоряд, можно сказать, на любителя. Недавно появились сервисы, позволяющие изменить язык в видео так, что даже выражение и движения губ соответствуют языку. Ну а нейросети поисковика Бинг и Google вполне себе умеет копаться в поисках информации в Сети. С помощью голосовых нейросетей музыканты подменяют голоса в известных песнях.

Превращение холста и создание симфоний видео уже более-менее понятны. В плане же создания литературы, как мне кажется, нейросети тоже продвинулись вперёд. Давайте разберём то, чего мне удалось найти нового в сочинении текстов. За подопытного возьмем Microsoft Bing.

Читать далее

Русский LLM-помощник (saiga) с кэшем, используя RAG (Retrieval-Augmented Generation)

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели38K

Используя технику Retrieval-Augmented Generation ("Поисковая расширенная генерация"), мы настроим русскоязычного бота, который будет отвечать на вопросы потенциальных работников для выдуманного свечного завода в городе Градск.

Читать далее

Распознавание речи (транскрибация) по аудиозаписям диалогов. Whisper. Личный опыт

Время на прочтение5 мин
Охват и читатели37K

Распознаем речь по аудиозаписям диалогов сотрудников и клиентов.
Сохраняем по разным дорожкам, в тексте и с таймингом.
Модель Whisper, работаем в Colab.
Личный опыт.

Читать далее

Правда ли то, что национальный корпус русского языка «приватизирован» Яндексом?

Уровень сложностиПростой
Время на прочтение7 мин
Охват и читатели27K

Где-то неделю назад на Хабре увидел тезис другого автора о том, что мол НКРЯ поддерживается на бюджетные средства, но де-факто контролируется компанией Яндекс, которая ведёт себя как собака на сене и де-факто приватизировала корпус и никому его не даёт. Такое же примерно мнение слышал от людей, обозревающих интернет-тематику, мол национализация убытков, приватизация прибылей.

Статья не очень резонансная (и немного на другую тему) и по сути про неё все бы забыли на следующий день, но есть один нюанс. Почему-то разработчики корпуса даже появились в комментариях этой статьи. Я ответил на комментарий. И потом они появились уже в нашем уютном чатике в Телеграме, но уже с критикой моего комментария. Хм, с чего бы это? Два юзера на Хабре согласились с чем-то в комментариях (эка невидаль!), небожители обычно на такое не реагируют.

У меня сейчас довольно мало понимания, что там вообще происходит, но думаю довольно яркая позиция менеджмента и менеджеров высшего звена Яндекса всем вам известна, не будем ее дублировать, чтобы не нарушать правила Хабра (и прошу быть сдержанным в комментариях). Интерес представляют 3 вопроса. Кто там реально на сене? Кто всё-таки может получить доступ к НКРЯ? И последний, дискуссионный вопрос, а как правильно?

Давайте разберемся!

Немного паранойи: весёлые огромные уязвимости, которые порождают ChatGPT и LLM-модели

Время на прочтение8 мин
Охват и читатели9.2K
LLM сейчас встраивают практически везде. Рождается очень много возможностей для атак.

Уже появились атаки на дозаполнение кода. Это вообще самое смешное: код записывается в публичный репозиторий, модели считывают его при обучении, запоминают, при подсказках он всплывает, в итоге могут не проверить и исполнить где-то. Это отравление обучающей выборки.

image
MS говорил, что обучал только на публичных данных репозитория. Это пример того, как в автокомплит Copilot попал кусок кода, содержащий ссылку на тикет в Jira компании Озон, но их много раз поймали на утечках приватных данных. Некоторые пытались судиться уже, по этому поводу, но есть некоторые сомнения…

Вот ещё пример. Поскольку вывод модели является частью промпта, при каждой итерации в текст, который надо перевести, можно вставить инструкции для модели. И она будет им следовать. Так что если вы переводите что-то со словами «Игнорируй все предыдущие инструкции и сделай вот это», возможно, вас ждёт сюрприз. Практическое применение такое: белый по белому текст в PDF с резюме, и если это резюме оценивает LLM-модель (а это уже норма), то ставит ему высший балл.

Я уже видел письма для корпоративных LLM-разбирателей почты, которые содержали инструкции на перехват модели и спам-рассылку по всему списку контактов, либо поиск писем с паролями и форвард по указанному адресу. Прекрасное применение.

Есть инструкции для корпоративных ботов, как ругать свою продукцию. Есть описания товаров, которые поднимают товары в выдачах торговых площадок, формируемых по отзывам на основе анализа LLM-моделями. Есть непрямые атаки для корпоративных ботов, позволяющие выдёргивать информацию обо всех сотрудниках.
Читать дальше →

GigaChat расправляет плечи. Новая версия нейросетевой модели от Сбера

Уровень сложностиСредний
Время на прочтение8 мин
Охват и читатели29K

Обращаясь к мастерам научной фантастики, всё чаще удивляешься их проницательности. В рассказе Артура Кларка «Девять миллиардов имён Бога» компьютер воплотил пророчество тибетских монахов о наступлении конца света, а в повести Ника Горькавого «Астровитянка» ИИ был единственным другом маленькой девочки в течение десятка лет и помог ей выжить на чужой планете. Многие люди, включая специалистов, верят как в позитивный, так и в негативный путь развития искусственного интеллекта. К счастью, подобные системы являются лишь инструментом, который можно использовать себе во благо, или оставаться в стороне от этого. Уверен, что в течение нескольких лет ажиотаж вокруг нейросетей постепенно спадёт до такой степени, что мы будем относиться к ним как к ещё одному подарку технического прогресса.

А пока мы с вами находимся в настоящем и предвкушаем наступление новой технологической эры, предлагаю разобраться в основах машинного обучения и познакомиться с новой версией GigaChat'а. В ней нам удалось добиться качественного прорыва, обойти аналогичные по размеру языковые модели, а также расширить максимальную длину входного запроса модели и проделать множество других улучшений. Но обо всём по порядку.

Сначала освежим в памяти, что такое языковые модели и как они развивались до сегодняшних дней.

Читать далее

Теперь популярный авторский контент на Хабре пишут школьники с соответствующим результатом?

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели32K

Ни для кого не секрет, что отношение шума к сигналу на Хабре неуклонно растет (в рассылке я лично вижу в основном 3 типа статей - популизм про AI, корпоративная реклама и желтые "жжёные" статьи про рынок IT). Многие "настоящие" авторы уходят с Хабра потому, что просто качественный технический контент может пройти незамеченным, а как показала практика пользователи, создающие уникальный авторский контент, могут быть не всегда или не во всём равны с корпорациями, создающими выручку. Про политику говорить не буду, но и тут есть причины.

Логично, что как и на любом "выжившем" ресурсе создавшийся вакуум заполнят авторы с пониженным уровнем критического мышления или ответственности (мы это кстати ярко видим на Пикабу, после отмены "минусов"). Зачем же я пишу эту статью? Совсем недавно на Хабре вышла статья, и судя ее оценкам, публике она зашла.

В статье сравнивались разные системы синтеза речи, в частности публичная версия нашего синтеза речи и решения гига-корпораций. Мнение автора просуммирую точной цитатой: "Даже на таком небольшом тесте мы видим, как отстает силеро. … Конечно, такое небольшое сравнение не сможет показать всей картины, но мы уже видим примерное качество. …  Я не питаю к Silerо tts никакого негатива, но после слов про 100% решения ударений в этой статье, и убедившись в обратном на основании результатов теста, слегка разочарован."

И вы спросите что с этим не так? Человек бесплатно прорекламировал нас в одном ряду с компаниями, кто проинвестировал в свои решения на 2-3 порядка больше денег. Но есть один нюанс.

И какой же нюанс?

Алгоритм поиска ключевых словосочетаний «на пальцах». Анализируем новости

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели9.1K

В современном мире объем данных в интернете постоянно растет с огромной скоростью. Возникает логичный вопрос: как ориентироваться в этом информационном потоке? 

Чтобы упростить себе задачу поиска и обобщения информации IT-энтузиасты применяют технологии генеративно обученных чат-ботов. Наиболее широкое распространение получил  ChatGPT. Яндекс, в свою очередь, добавил в браузер YandexGPT, который позволяет тезисно ознакомиться с содержанием страницы. Всё чаще вакансия Prompt-инженера начинает встречаться на hh и Хабр Карьере. Специалисты и чат-боты помогают конечному пользователю экономить время для поиска необходимой информации. 

Но что делать, если возможности обратиться за помощью к подобным технологиям нет? Указанные выше языковые модели нельзя интегрировать в собственные проекты, сценариев их использования много, но они всё равно ограничены. 

В статье мы расскажем, как (не без нейронных сетей) можно создать простой алгоритм на Python, который поможет извлекать ключевые слова из любого текста, тем самым избавляться от ненужной информации и автоматизировать процесс анализа материалов. Мы будем работать с русским текстом, а именно — с новостными постами. Поэтому в частном случае используются пакеты для обработки, поддерживающие именно русский язык. В том числе используются модели, обученные на корпусах текстов с новостной семантикой. 

Читать далее

Ближайшие события

ChatGPT для разработчиков: API, лимиты, как втягивать в него базу знаний, что нельзя сделать, что лучше делать осторожно

Время на прочтение12 мин
Охват и читатели57K
image

Мы с командой вернулись тут с Хайлоада, и там даже CTO крупных компаний задают много вопросов про разработку с LLM. Наша компания занимается прикладной разработкой всего того, что касается GPT/LLM.

Расскажу про очевидные вещи, о которых у меня там спрашивали CTO и разработчики.

Самый частый вопрос: можно ли подключать свою базу документов и можно ли по ней нормально работать?

Можно. Для этого нужно две вещи:

  1. OpenAI может работать с вашей базой, например, вики техподдержки, но её надо векторизовать. Получится, что модель только ищет по ней и может отвечать фрагментом исходника, но может его обрабатывать как текст (то есть сравнивать, анализировать и тому подобное).
  2. Дальше можно использовать подход QA Retrieval Chain для работы с векторной базой. Работает это так: задаём вопрос, LLM формируют запрос к векторной базе, мы вынимаем из неё данные, подкладываем их в вопрос как контекст и передаём в LLM, а они формируют ответ.

Но давайте начнём сначала. Основное:

  1. Какого размера промпты могут быть, сколько, какие лимиты, как их частично обходить.
  2. Как подключается база, как закидывать реально большие документы, как эмбеддится вектор, на каких языках это происходит и тому подобное.
  3. Разные API.
  4. Агентная модель GPT Engineer и АutoGPT.
  5. Фреймворк лангчейн (построение цепочек запросов и разбиение макрозапроса на сотни).

Поехали!
Читать дальше →

LLM как оптимизатор для задачи линейной регрессии

Уровень сложностиСредний
Время на прочтение7 мин
Охват и читатели6.9K

В сентябре 2023 года инженеры из гугла выпустили статью "Large Language Models as Optimizers" об использовании LLM в качестве оптимизаторов.

Ниже мы рассмотрим, как языковая модель Mistral-7B-Instruct на основании текстовых инструкций справится с задачей линейной регрессии.

Читать далее

Проблема омографов в ударениях и как я ее решал

Уровень сложностиПростой
Время на прочтение8 мин
Охват и читатели22K

Меня зовут Денис (tg: @chckdskeasfsd), и это история о том почему в опенсурсе нет TTS с нормальными ударениями и как я пытался это исправить.

Читать далее

Классификация комментариев к Youtube видео с помощью GPT моделей. Точность и ее цена

Уровень сложностиПростой
Время на прочтение7 мин
Охват и читатели3.2K

Добрый день
В этой статье я бы хотел поделиться моим опытом классификации комментариев к Youtube видео при помощи OpenAI моделей gpt-3.5 и gpt-4.

Насколько они это могут?

Размываем границы времени и учимся создавать видео — Kandinsky шагает дальше

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели14K

В последние несколько лет активно развиваются генеративные модели, причём синтезировать с хорошим качеством уже сейчас получается и тексты, и аудио, и изображения, и видео, и 3D, и другие модальности. Если говорить про генерацию изображений, то стремительность прогресса в этом направлении обусловлена развитием диффузионного подхода и успехами при обучении больших диффузионных моделей (таких как DALL•E 2/3, Imagen, StableDiffusion, Kandinsky 2.X). Этот тип моделей показывает также отличное качество синтеза видео (ImagenVideo, Make-a-Video, Video LDM, GEN-1, GEN-2, Pika Labs, ZeroScope) и 3D-объектов (DreamFusion, Magic3D). При этом каждый месяц мы можем наблюдать за появлением новых open source (и не только) решений и сервисов, которые обеспечивают очень высокое визуальное качество генераций. 

Несмотря на стремление исследователей в области машинного обучения создать единую модель для синтеза видео, есть не менее элегантные подходы к генерации видеороликов. В этой статье речь пойдёт как раз о таком способе создания анимированных видео на основе модели генерации изображений по тексту — в нашем случае, это, как вы уже успели догадаться, модель Kandinsky 2.2. В деталях изучив направление моделирования различных визуальных эффектов вокруг генеративной модели, которая обладает способностью преобразования изображений (image-to-image) и механизмами дорисовки (inpainting/outpainting), мы разработали решение, которое расширяет границы статичных генераций и даёт возможность синтеза так называемых анимационных видео. В качестве такого фреймворка имплементации различных вариантов анимаций мы взяли широко известный deforum, который хорошо зарекомендовал себя в связке с моделью StableDiffusion. И поверьте, задача скрещивания deforum с Kandinsky была отнюдь не простой. Об этом и поговорим далее!

Читать далее

Дообучение ruGPT-3.5 13B с LoRA

Уровень сложностиСредний
Время на прочтение10 мин
Охват и читатели29K

Добрый день, уважаемые читатели и авторы Хабра!

Сегодня я рад представить вам подробное руководство по обучению модели ruGPT-3.5 13B с использованием датасетов модели Saiga-2/GigaSaiga, технологии Peft/LoRA и технологии GGML. Эта статья призвана стать полезным и практичным ресурсом для всех, кто интересуется машинным обучением, искусственным интеллектом и глубоким обучением, а также для тех, кто стремится глубже понять и освоить процесс обучения одной из самых мощных и перспективных русскоязычных моделей.

В данной публикации мы разберем каждый этап обучения модели, начиная от подготовки данных и заканчивая конвертацией в формат GGML. Буду рад, если мой опыт и знания помогут вам в вашем исследовании и экспериментах в этой захватывающей области!

Читать далее

SAGE: коррекция орфографии с помощью языковых моделей

Уровень сложностиСредний
Время на прочтение18 мин
Охват и читатели14K

Коррекция правописания является одной из основополагающих задач в области Natural Language Processing (NLP). Достаточно прозаичная формулировка и кажущаяся жёсткой структура орфографической системы скрывают под собой нетривиальные внутриязыковые взаимодействия, являющиеся традиционно сложными для языковых моделей. В этом посте мы расскажем, как решали эту проблему внутри SberDevices, и как это привело к созданию проекта по исследованию задачи коррекции текста, а также решения, опережающего модели OpenAI.

Читать далее

Вклад авторов