Идея создания этого пет-проекта возникла из желания написать собственного ИИ-агента. Я сформулировал для себя минимальные технические требования: агент должен иметь несколько состояний, уметь запускать тулзы и использовать RAG для поиска ответов на вопросы.
В итоге возникла идея написать персонального телеграм-ИИ-бота, который умеет запоминать нужную мне информацию, и когда мне надо — я могу его спросить, что он запомнил. Что-то вроде блокнота, только это будет ИИ-блокнот, который умеет отвечать на вопросы. В дополнение я решил добавить в него функцию, чтобы он мог запускать команды на сервере — причём команды, описанные человеческим языком, он будет переводить в команды для терминала.
Изначально я думал использовать LangChain. Очень хороший инструмент — позволяет подключать векторные базы данных, использовать различные LLM как для инференса, так и для эмбеддинга, а также описывать логику работы агента через граф состояний. Можно вызывать уже готовые тулзы. В целом, на первый взгляд всё выглядит удобно и просто, особенно когда смотришь типовые и несложные примеры.
Но, покопавшись немного глубже, мне показалось, что затраты на изучение этого фреймворка не оправдывают себя. Проще напрямую вызывать LLM, эмбеддинги и Qdrant через REST API. А логику работы агента описать в коде через enum, описывающий состояния, и делать match по этим состояниям.
К тому же LangChain изначально написан на Python. Я хотел бы писать на Rust, а использовать Rust-версию LangChain — сомнительное удовольствие, которое обычно упирается в самый неподходящий момент: что-то ещё не было переписано на Rust.