Сегодня множество сервисов используют в своей работе нейросетевые модели. При этом из-за невысокой производительности клиентских устройств вычисления в большинстве случаев производятся на сервере. Однако производительность смартфонов с каждым годом растет и сейчас становится возможным запуск небольших моделей на клиентских устройствах. Возникает вопрос: как это сделать? Помимо запуска модели требуется выполнять предобработку и постобработку данных. К тому же, есть как минимум две платформы, где это нужно реализовать: android и iOS. Mediapipe — фреймворк для запуска пайплайнов (предобработка данных, запуск (inference) модели, а также постобработка результатов модели) машинного обучения, позволяющий решить описанные выше проблемы и упростить написание кроссплатформенного кода для запуска моделей.
Александр Дончук @Alex_Donchuk
Программист
Deep Learning — не только котики на мобилках или как мы производим дефектовку тележек локомотивов
5 мин
24KБуквально пару дней назад компания Aurorai передала в опытную эксплуатация систему распознавания дефектов и контроля состояния тележек для локомотивов Ермак. Задача нетривиальная и очень интересная, первым этапом которой было предложено оценить состояние тормозных колодок и ширины бандажа. Нам удалось решить задачу с точность до 1мм при скорости локоматива до 30 км/ч! Хочу отметить, что благодаря специфики можно было использовать “TTA (test-time augmentation)” – яркий пример kaggle-style хака из соревнований, который плохо ложится на прод и семантическую сегментацию на базе se_resnext50 encoder, которая даёт поразительный по точности результат в предсказании маски.
+74
Информация
- В рейтинге
- Не участвует
- Откуда
- Москва, Москва и Московская обл., Россия
- Работает в
- Дата рождения
- Зарегистрирован
- Активность