Тем более, что список рынков, данные с которых можно получать через Яху Финанс огромен. На текущий момент в нем 79 стран, включая и Россию.
Apple Inc. (AAPL) на сайте и в API Яху Финанс
Пользователь
Многие, кто работал с Spark ML, знают, что некоторые вещи там сделаны "не совсем удачно"
или не сделаны вообще. Позиция разработчиков Spark в том, что SparkML — это базовая платформа, а все расширения должны быть отдельными пакетами. Но это не всегда удобно, ведь Data Scientist и аналитики хотят работать с привычными инструментами (Jupter, Zeppelin), где есть большая часть того, что нужно. Они не хотят собирать при помощи maven-assembly JAR-файлы на 500 мегабайт или руками скачивать зависимости и добавлять в параметры запуска Spark. А более тонкая работа с системами сборки JVM-проектов может потребовать от привыкшых к Jupyter/Zeppelin аналитиков и DataScientist-ов много дополнительных усилий. Просить же DevOps-ов и администраторов кластера ставить кучу пакетов на вычислительные ноды — явно плохая идея. Тот, кто писал расширения для SparkML самостоятельно, знает, сколько там скрытых трудностей с важными классами и методами (которые почему-то private[ml]), ограничениями на типы сохраняемых параметров и т.д.
И кажется, что теперь, с библиотекой MMLSpark, жизнь станет немного проще, а порог вхождения в масштабируемое машинное обучение со SparkML и Scala чуть ниже.