Как стать автором
Обновить
63
0
Михаил Митрофанов @mikerosoft

Направление по развитию цифровых технологий

Отправить сообщение

Тот самый датасет, где архитектор чуть не сошёл с ума

Время на прочтение10 мин
Количество просмотров17K
image

Помните, я обещал рассказать про датасет, на котором можно сойти с ума? Ну вот, однажды пришли к нам инженеры производства и говорят, что надо помочь с отладкой. Цеха.

В одном из рулонов стали на 325-м метре образовалась продольная трещина, и теперь все в цеху хотят знать, где что случилось и почему. То есть надо проследить, что конкретно происходило с этим кусочком стали на протяжении всей его биографии.

Задача понятная: берём архитектора, берём данные со всех датчиков, архитектор совершает какую-то магию — и вот у нас готовый датасет для анализа.

И вот на «берём данные с датчиков» мы споткнулись в первый раз. Архитектор, умный адекватный мужик, привыкший работать с синтетическими данными и чистой математикой, чуть не сошёл с ума на нашем реальном производстве.

И уволился посреди проекта со словами, что его психика этого больше не выдержит.

Потому что в теории всё немного не так, как на практике — например, есть много случаев, когда последовательность, которая по определению должна быть монотонно возрастающей, может быть:

  • Невозрастающей.
  • Немонотонной.

В смысле, что это в принципе физически невозможно, но часто происходит. Ещё могут быть скачки во времени и другие нарушения причинно-следственной связи.
Читать дальше →
Всего голосов 52: ↑51 и ↓1+62
Комментарии42

Приходите к нам на завод, у нас тяжело

Время на прочтение10 мин
Количество просмотров140K
Короче, ИТ на заводе — это вам не романтика, особенно в нашем цифровом направлении.

Между «давайте этим займёмся» и «о, смотрите, какая гламурная ML-модель» лежит очень много того, про что не рассказывают. Сейчас расскажу.

Вначале у нас была банда энтузиастов из разных подразделений: несколько человек из ИТ, АСУТП, технологи со знанием статистики — чтобы смотреть с разных углов и видеть всё в целом, насколько это возможно. Начали с оценки перспектив. Они были необъятные — наше производство размером с небольшой город. Стали формироваться подразделения и направления: кто-то пошёл собирать роботов, кто-то в видеоаналитику, кто-то в лайтовый анализ данных, кто-то в самый хардкор — в дата-сатанизм. Работы у нас всегда больше, чем рук.

И на каждой из этих дорожек нас поджидали свои чудеса и сюрпризы.

Вот, к примеру, видеоаналитика:

  • Мы поняли, что ML в 50% задач не нужны. Нужна, например, камера, которая по цвету определяет, где есть железка, и смотрит её геометрию в реальности. Всё. Или другая камера, которая следит, чтобы в нужной зоне ничего не шевелилось.
  • Всё это прекрасно до первого солнечного зайчика. ML отлично показывают себя там, где вам лень строить крышу или ставить прожектор над конвейером.
  • У нас была идея, что мы можем сами в нейросети. Чуть не написали свой сервис для распознавания номеров вагонов. Казалось, делов-то на 20 минут, а у подрядчика это стоит 25 копеек за фото. Сделали свой, сферические вагоны в вакууме он определял хорошо. Потом приехало вот это:

image

А потом внезапно пошёл дождь. Знаете что? Вагоны под дождём становятся мокрыми. Это было неожиданно. Ещё они бывают после снега, битые, немытые, обновлённые криворукими малярами и ПРОЧИЕ. И в солнечных зайчиках тоже.

Мы накалывались на получении данных (кто сказал, что прошивка станка без костылей?), на роботизации, инфраструктуре, связи, на всём. Мы облазили весь завод, испачкались в солидоле, мазуте и масле. Но стали делать то, что должны, — оптимизировать мир.
Читать дальше →
Всего голосов 228: ↑224 и ↓4+268
Комментарии278

Информация

В рейтинге
Не участвует
Откуда
Владимир, Владимирская обл., Россия
Работает в
Дата рождения
Зарегистрирован
Активность