Привет, Хабр! Продолжаем нашу серию статей о суррогатном моделировании, на этот раз расскажем, как мы применили нейросети при создании сложных технических систем – приспособили GRU в качестве суррогатной модели. Реальный кейс для клиента в рамках реального проекта.
Поставим нейросети обучение на службу проектировщику. Полетели!
Продолжаем серию постов об одном очень полезном методе из мира машинного обучения, цель которого – существенно ускорить инженерное проектирование. Мы с вами уже научились обучать легкие модели на замену мощным и детальным инженерным пакетам для симуляции сложных систем. Теперь научимся делать так, чтобы наши суррогатные модели точно отражали изучаемое явление в нужных пределах, при этом требовали бы как можно меньше данных и очень быстро обучались.
Тема супер интересная, поэтому мы сделали перевод отличной статьи авторства Шуая Гуо, и на ее основе делимся своим опытом и кодом на MATLAB, чтобы вы могли все попробовать сами.
Продолжаем ускорять инженерное проектирование при помощи суррогатных моделей. Суррогатное моделирование – это обучение статистической модели, которая послужит дешевым, но точным заменителем тяжелой имитационной модели при выполнении самых разных задач проектирования. Мы дополнили исходную статью своим кодом, который вы легко запустите и сами оцените мощь этого подхода.
Представьте, что кто-то создал для нас очень детальную имитационную модель сложнейшей системы (спасибо!). Теперь нам её эксплуатировать, мы же проектировщики, так что поищем оптимальную конфигурацию (миллион комбинаций параметров), прогнав для каждой из них по миллиону экспериментов (погода, реакция всяких агентов и просто для накопления статистики...). И тут нас настигает понимание того, что задача будет решаться несколько недель. Потратить время на упрощение модели вручную, или задействовать машинное обучение?
Что вам важнее в DL-проекте, удобство или производительность? Посмотрим на проблему глазами инженера-разработчика сложных систем с элементами искусственного интеллекта. Как типичный инструментарий в этой сфере справляется с обучением и выполнением?
В этой статье мы запустим пару нейросетей в MATLAB и сравним быстродействие ResNet с opensource-фреймворками. Так что, если хотите обсудить, в чем (кроме удобства) коммерческий фреймворк может выиграть у опенсорса, добро пожаловать!