Стандартная гауссова статистика работает на основе следующих предположений. Центральная предельная теорема утверждает, что при увеличении числа испытаний, предельное распределение случайной системы будет нормальным распределением. События должны быть независимыми и идентично распределены (т.е. не должны влиять друг на друга и должны иметь одинаковую вероятность наступления). При исследовании крупных комплексных систем обычно предполагают гипотезу о нормальности системы, чтобы далее мог быть применен стандартный статистический анализ.
Часто на практике изучаемые системы (от солнечных пятен, среднегодовых значений выпадения осадков и до финансовых рынков, временных рядов экономических показателей) не являются нормально-распределенными или близкими к ней. Для анализа таких систем Херстом [1] был предложен метод Нормированного размаха (RS-анализ). Главным образом данный метод позволяет различить случайный и фрактальный временные ряды, а также делать выводы о наличии непериодических циклов, долговременной памяти и т.д.
Часто на практике изучаемые системы (от солнечных пятен, среднегодовых значений выпадения осадков и до финансовых рынков, временных рядов экономических показателей) не являются нормально-распределенными или близкими к ней. Для анализа таких систем Херстом [1] был предложен метод Нормированного размаха (RS-анализ). Главным образом данный метод позволяет различить случайный и фрактальный временные ряды, а также делать выводы о наличии непериодических циклов, долговременной памяти и т.д.
Алгоритм RS-анализа
- Дан исходный ряд . Рассчитаем логарифмические отношения:
- Разделим ряд на смежных периодов длиной . Отметим каждый период как , где . Определим для каждого среднее значение: