Как стать автором
Обновить
4
0

Пользователь

Отправить сообщение

RS-анализ (анализ фрактальной структуры временных рядов)

Время на прочтение2 мин
Количество просмотров31K
Стандартная гауссова статистика работает на основе следующих предположений. Центральная предельная теорема утверждает, что при увеличении числа испытаний, предельное распределение случайной системы будет нормальным распределением. События должны быть независимыми и идентично распределены (т.е. не должны влиять друг на друга и должны иметь одинаковую вероятность наступления). При исследовании крупных комплексных систем обычно предполагают гипотезу о нормальности системы, чтобы далее мог быть применен стандартный статистический анализ.

Часто на практике изучаемые системы (от солнечных пятен, среднегодовых значений выпадения осадков и до финансовых рынков, временных рядов экономических показателей) не являются нормально-распределенными или близкими к ней. Для анализа таких систем Херстом [1] был предложен метод Нормированного размаха (RS-анализ). Главным образом данный метод позволяет различить случайный и фрактальный временные ряды, а также делать выводы о наличии непериодических циклов, долговременной памяти и т.д.

Алгоритм RS-анализа


  1. Дан исходный ряд image. Рассчитаем логарифмические отношения:

    image
  2. Разделим ряд image на image смежных периодов длиной image. Отметим каждый период как image, где image. Определим для каждого image среднее значение:

    image

Читать дальше →
Всего голосов 19: ↑17 и ↓2+15
Комментарии5

Машинное обучение — 4: Скользящее среднее

Время на прочтение3 мин
Количество просмотров33K
Принято считать, что две базовые операции «машинного обучения» — это регрессия и классификация. Регрессия — это не только инструмент для выявления параметров зависимости y(x) между рядами данных x и y (чему я уже посвятил несколько статей), но и частный случай техники их сглаживания. В этом примере мы пойдем чуть дальше и рассмотрим, как можно проводить сглаживание, когда вид зависимости y(x) заранее неизвестен, а также, как можно отфильтровать данные, которые контролируются разными эффектами с существенно разными временными характеристиками.

Один из самых популярных алгоритмов сглаживания, применяемый, в частности, в биржевой торговле — это скользящее усреднение (включаю его в цикл статей по машинному обучению с некоторой натяжкой). Рассмотрим скользящее усреднение на примере колебаний курса доллара на протяжении нескольких последних недель (опять-таки в качестве инструмента исследования используя Mathcad). Сами расчеты лежат здесь.



Читать дальше →
Всего голосов 15: ↑12 и ↓3+9
Комментарии13

Исследование защиты игры Limbo. Кейген

Время на прочтение7 мин
Количество просмотров69K


Всем привет. Многие знают об этой замечательной игре — LIMBO! Вы даже наверняка покупали ее в Стиме, или качали с торрентов…
Я тоже ее купил когда-то (что и вам советую!), и прошел). Но, как всегда, мне было этого мало, и я, из спортивного интереса, решил изучить ее защиту. Так и появился кейген к игре LIMBO.
Читать дальше →
Всего голосов 128: ↑115 и ↓13+102
Комментарии76

Вероятностные модели: искусство расставлять скобки

Время на прочтение5 мин
Количество просмотров26K
После большого перерыва продолжаем цикл о графических вероятностных моделях (часть 1, часть 2). Сегодня мы наконец-то от постановок задач перейдём к алгоритмам; поговорим мы о самом простом, но часто полезном алгоритме вывода на фактор-графах – алгоритме передачи сообщений. Или, как его ещё можно назвать, алгоритме правильной расстановки скобок.


by sergey-lesiuk
Читать дальше →
Всего голосов 51: ↑48 и ↓3+45
Комментарии2

Вероятностные модели: сэмплирование

Время на прочтение10 мин
Количество просмотров35K
И снова здравствуйте! Сегодня я продолжаю серию статей в блоге Surfingbird, посвящённую разным методам рекомендаций, а также иногда и просто разного рода вероятностным моделям. Давным-давно, кажется, в прошлую пятницу летом прошлого года, я написал небольшой цикл о графических вероятностных моделях: первая часть вводила основы графических вероятностных моделей, во второй части было несколько примеров, часть 3 рассказывала об алгоритме передачи сообщений, а в четвёртой части мы кратко поговорили о вариационных приближениях. Цикл заканчивался обещанием поговорить о сэмплировании — ну что ж, не прошло и года. Вообще говоря, в этом мини-цикле я поведу речь более предметно о модели LDA и о том, как она помогает нам делать рекомендации текстового контента. Но сегодня начну с того, что выполню давнее обещание и расскажу о сэмплировании в вероятностных моделях — одном из основных методов приближённого вывода.

Читать дальше →
Всего голосов 45: ↑45 и ↓0+45
Комментарии9

Вероятностные модели: примеры и картинки

Время на прочтение8 мин
Количество просмотров63K
Сегодня – вторая серия цикла, начатого в прошлый раз; тогда мы поговорили о направленных графических вероятностных моделях, нарисовали главные картинки этой науки и обсудили, каким зависимостям и независимостям они соответствуют. Сегодня – ряд иллюстраций к материалу прошлого раза; мы обсудим несколько важных и интересных моделей, нарисуем соответствующие им картинки и увидим, каким факторизациям совместного распределения всех переменных они соответствуют.


Читать дальше →
Всего голосов 49: ↑48 и ↓1+47
Комментарии10

Вероятностные модели: байесовские сети

Время на прочтение8 мин
Количество просмотров87K
В этом блоге мы уже много о чём поговорили: были краткие описания основных рекомендательных алгоритмов (постановка задачи, user-based и item-based, SVD: 1, 2, 3, 4), о нескольких моделях для работы с контентом (наивный Байес, LDA, обзор методов анализа текстов), был цикл статей о холодном старте (постановка задачи, текстмайнинг, теги), была мини-серия о многоруких бандитах (часть 1, часть 2).

Чтобы двигаться дальше и поместить эти и многие другие методы в общий контекст, нам нужно выработать некую общую базу, научиться языку, на котором разговаривают современные методы обработки данных, – языку графических вероятностных моделей. Сегодня – первая часть этого рассказа, самая простая, с картинками и пояснениями.


Читать дальше →
Всего голосов 49: ↑47 и ↓2+45
Комментарии35

Анализ алгоритмов аудиоаналитики

Время на прочтение13 мин
Количество просмотров30K
Разработки Синезис не ограничиваются одной лишь видеоаналитикой. Мы занимаемся и аудиоаналитикой. Вот о ней-то мы и хотели сегодня вам рассказать. Из этой статьи вы узнаете о наиболее известных аудиоаналитических системах, а также алгоритмах и их специфике. В конце материала – традиционно – список источников и полезных ссылок, в том числе аудиобиблиотек.

Осторожно: статья может долго грузиться — много картинок.
Автор: Михаил Антоненко.
Читать дальше →
Всего голосов 35: ↑35 и ↓0+35
Комментарии0

Мой опыт введения в R или «I Love R»

Время на прочтение8 мин
Количество просмотров35K
Я — ученый [здесь про это подробнее]. «Пролетарий умственного труда». По образованию физик. Тружусь на ниве обработки медицинской и биологической информации 30+ лет.
В R работаю ровно 10 лет, мигрировав на него после 15 лет плотного сотрудничества с Matlab. Первопричиной миграции на другую рабочую платформу послужила моя собственная физическая миграция на противоположный край Земли в Окланд, Новая Зеландия. Здесь жизнь с первых дней толкнула меня в объятия R, о чем мне еще не приходилось жалеть.

Все чаще наблюдаю вспышки интереса к R в профессиональном ру.нете. Ну вот и на этом уважаемом ресурсе появляются статьи про него. Далее под катом моя первая попытка русскоязычного введения в R — первая (словесная) часть презентации, которую я делал для коллег факультета Animal Science, Iova State University три года назад.
(в сторону: а как, оказывется, трудно себя переводить...)
Читать дальше →
Всего голосов 39: ↑36 и ↓3+33
Комментарии7

Непрерывное wavelet преобразование

Время на прочтение5 мин
Количество просмотров56K
Здравствуйте, уважаемое хабрасообщество.
В последнее время на хабре стали появляться статьи, так или иначе связанные с анализом и обработкой сигналов и изображений (например Обнаружение устойчивых признаков изображения: метод SURF, Интегральное представление изображений от BigObfuscator), в связи с чем я хотел бы вкратце осветить такой инструмент для анализа сигналов, как wavelet-преобразование.

Для того, чтобы понять смысл вейвлет анализа начнем довольно издалека. В данной статье описывается математический смысл (простыми словами) вейвлет-преобразований, о применимости и его дискретной версии я расскажу позднее.

Спектральный анализ — это один из методов обработки сигналов, который позволяет характеризовать частотную составляющую измеряемого сигнала.

Читать дальше →
Всего голосов 66: ↑63 и ↓3+60
Комментарии55
12 ...
30

Информация

В рейтинге
Не участвует
Зарегистрирован
Активность