Как стать автором
Обновить
3
0

Пользователь

Отправить сообщение

Развертывание модели глубокого обучения Keras в виде веб-приложения на Python

Время на прочтение8 мин
Количество просмотров9.6K
Перевод статьи подготовлен специально для студентов курса «Web-разработчик на Python».




Создать классный проект с машинным обучением – это одно дело, другое дело, когда вам нужно, чтобы другие люди тоже смогли его увидеть. Конечно, вы можете положить весь проект на GitHub, но как ваши бабушка с дедушкой поймут, что вы сделали? Нет, нам нужно развернуть нашу модель глубокого обучения в виде веб-приложения, которое будет доступно любому человеку в мире.

В этой статье мы узнаем, как написать веб-приложение, которое использует обученную рекуррентную нейронную сеть Keras и позволяет пользователям создавать новые патентные аннотации. Этот проект основан на работе из статьи «Recurrent Neural Networks by Example», однако знать, как строится RNN сейчас совсем не обязательно. На данный момент мы просто будем рассматривать ее как черный ящик: мы задаем начальную последовательность, и она выводит совершенно новую аннотацию к патенту, которую можно просмотреть в браузере!
Читать дальше →
Всего голосов 14: ↑11 и ↓3+8
Комментарии0

Создание модели предсказания кода МКБ-10 на основе текста описания болезни

Время на прочтение15 мин
Количество просмотров5.4K

Привет, Хабр! Решила с вами поделиться одной простой работой, которая привела к неплохим результатам. Расскажу о всем подробно и очень просто:) Интересно тем, кто еще не решал задачи NLP до этого момента.

Читать далее
Всего голосов 6: ↑6 и ↓0+6
Комментарии22

Python: коллекции, часть 1/4: классификация, общие подходы и методы, конвертация

Время на прочтение7 мин
Количество просмотров332K
Коллекция в Python — программный объект (переменная-контейнер), хранящая набор значений одного или различных типов, позволяющий обращаться к этим значениям, а также применять специальные функции и методы, зависящие от типа коллекции.

Частая проблема при изучении коллекций заключается в том, что разобрав каждый тип довольно детально, обычно потом не уделяется достаточного внимания разъяснению картины в целом, не проводятся чёткие сходства и различия между типами, не показывается как одну и туже задачу решать для каждой из коллекций в сравнении.

Вот именно эту проблему я хочу попытаться решить в данном цикле статей – рассмотреть ряд подходов к работе со стандартными коллекциями в Python в сравнении между коллекциями разных типов, а не по отдельности, как это обычно показывается в обучающих материалах. Кроме того, постараюсь затронуть некоторые моменты, вызывающие сложности и ошибки у начинающих.

Для кого: для изучающих Python и уже имеющих начальное представление о коллекциях и работе с ними, желающих систематизировать и углубить свои знания, сложить их в целостную картину.

Будем рассматривать стандартные встроенные коллекционные типы данных в Python: список (list), кортеж (tuple), строку (string), множества (set, frozenset), словарь (dict). Коллекции из модуля collections рассматриваться не будут, хотя многое из статьи должно быть применимым и при работе с ними.

ОГЛАВЛЕНИЕ:


  1. Классификация коллекций;
  2. Общие подходы к работе с коллекциями;
  3. Общие методы для части коллекций;
  4. Конвертирование коллекций.
Читать дальше →
Всего голосов 38: ↑38 и ↓0+38
Комментарии27

Перевод книги Эндрю Ына «Страсть к машинному обучению» Главы 1 — 14

Время на прочтение24 мин
Количество просмотров61K

Некоторое время назад в моей ленте в фейсбуке всплыла ссылка на книгу Эндрю Ына (Andrew Ng) "Machine Learning Yearning", которую можно перевести, как "Страсть к машинному обучению" или "Жажда машинного обучения".


image<img src="<img src="https://habrastorage.org/webt/ds/rc/ct/dsrcctfottkedkf7o1hxbqsoamq.png" />" alt="image"/>


Людям, интересующимся машинным обучением или работающим в этой сфере представлять Эндрю не нужно. Для непосвященных достаточно сказать, что он является звездой мировой величины в области искусственного интеллекта. Ученый, инженер, предприниматель, один из основателей Coursera. Автор отличного курса по введению в машинное обучение и курсов, составляющих специализацию "Глубокое обучение" (Deep Learning).

Читать дальше →
Всего голосов 40: ↑40 и ↓0+40
Комментарии3

Введение в архитектуры нейронных сетей

Время на прочтение31 мин
Количество просмотров200K


Григорий Сапунов (Intento)


Меня зовут Григорий Сапунов, я СТО компании Intento. Занимаюсь я нейросетями довольно давно и machine learning’ом, в частности, занимался построением нейросетевых распознавателей дорожных знаков и номеров. Участвую в проекте по нейросетевой стилизации изображений, помогаю многим компаниям.

Давайте перейдем сразу к делу. Моя цель — дать вам базовую терминологию и понимание, что к чему в этой области, из каких кирпичиков собираются нейросети, и как это использовать.

План доклада такой. Сначала небольшое введение про то, что такое нейрон, нейросеть, глубокая нейросеть, чтобы мы с вами общались на одном языке.

Дальше я расскажу про важные тренды, что происходит в этой области. Затем мы углубимся в архитектуру нейросетей, рассмотрим 3 основных их класса. Это будет самая содержательная часть.

После этого рассмотрим 2 сравнительно продвинутых темы и закончим небольшим обзором фреймворков и библиотек для работы с нейросетями.
Читать дальше →
Всего голосов 54: ↑51 и ↓3+48
Комментарии2

Y-метод — действительно простой способ собрать кубик Рубика

Время на прочтение7 мин
Количество просмотров330K

Введение


В статье рассматривается «Y-метод» сборки кубика Рубика — его легко понять и запомнить. Он основан всего на одной последовательности, которая называется «Y-движение». Поняв этот алгоритм, вы навряд ли забудете как собрать кубик самостоятельно.
Читать дальше →
Всего голосов 86: ↑85 и ↓1+116
Комментарии78

Информация

В рейтинге
Не участвует
Зарегистрирован
Активность