Как стать автором
Обновить
69.76
Open Data Science
Крупнейшее русскоязычное Data Science сообщество
Сначала показывать

Открытый курс машинного обучения. Тема 4. Линейные модели классификации и регрессии

Время на прочтение30 мин
Количество просмотров566K

Всем привет!


Сегодня мы детально обсудим очень важный класс моделей машинного обучения – линейных. Ключевое отличие нашей подачи материала от аналогичной в курсах эконометрики и статистики – это акцент на практическом применении линейных моделей в реальных задачах (хотя и математики тоже будет немало).


Пример такой задачи – это соревнование Kaggle Inclass по идентификации пользователя в Интернете по его последовательности переходов по сайтам.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Все материалы доступны на GitHub.
А вот видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017). В ней, в частности, рассмотрены два бенчмарка соревнования, полученные с помощью логистической регрессии.

Читать дальше →

Библиотеки для глубокого обучения Theano/Lasagne

Время на прочтение14 мин
Количество просмотров46K

Привет, Хабр!


Параллельно с публикациями статей открытого курса по машинному обучению мы решили запустить ещё одну серию — о работе с популярными фреймворками для нейронных сетей и глубокого обучения.


Я открою этот цикл статьёй о Theano — библиотеке, которая используется для разработки систем машинного обучения как сама по себе, так и в качестве вычислительного бекэнда для более высокоуровневых библиотек, например, Lasagne, Keras или Blocks.


Theano разрабатывается с 2007 года главным образом группой MILA из Университета Монреаля и названа в честь древнегреческой женщины-философа и математика Феано (предположительно изображена на картинке). Основными принципами являются: интеграция с numpy, прозрачное использование различных вычислительных устройств (главным образом GPU), динамическая генерация оптимизированного С-кода.

Читать дальше →

Открытый курс машинного обучения. Тема 3. Классификация, деревья решений и метод ближайших соседей

Время на прочтение33 мин
Количество просмотров543K

Привет всем, кто проходит курс машинного обучения на Хабре!


В первых двух частях (1, 2) мы попрактиковались в первичном анализе данных с Pandas и в построении картинок, позволяющих делать выводы по данным. Сегодня наконец перейдем к машинному обучению. Поговорим о задачах машинного обучения и рассмотрим 2 простых подхода – деревья решений и метод ближайших соседей. Также обсудим, как с помощью кросс-валидации выбирать модель для конкретных данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.

Читать дальше →

Открытый курс машинного обучения. Тема 2: Визуализация данных c Python

Время на прочтение15 мин
Количество просмотров442K

Второе занятие посвящено визуализации данных в Python. Сначала мы посмотрим на основные методы библиотек Seaborn и Plotly, затем поанализируем знакомый нам по первой статье набор данных по оттоку клиентов телеком-оператора и подглядим в n-мерное пространство с помощью алгоритма t-SNE. Есть и видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Сейчас статья уже будет существенно длиннее. Готовы? Поехали!

Читать дальше →

Открытый курс машинного обучения. Тема 1. Первичный анализ данных с Pandas

Уровень сложностиПростой
Время на прочтение15 мин
Количество просмотров1.1M


Открытый курс машинного обучения mlcourse.ai сообщества OpenDataScience – это сбалансированный по теории и практике курс, дающий как знания, так и навыки (необходимые, но не достаточные) машинного обучения уровня Junior Data Scientist. Нечасто встретите и подробное описание математики, стоящей за используемыми алгоритмами, и соревнования Kaggle Inclass, и примеры бизнес-применения машинного обучения в одном курсе. С 2017 по 2019 годы Юрий Кашницкий yorko и большая команда ODS проводили живые запуски курса дважды в год – с домашними заданиями, соревнованиями и общим рейтингом учаcтников (имена героев запечатлены тут). Сейчас курс в режиме самостоятельного прохождения.

Читать дальше →

Базовые принципы машинного обучения на примере линейной регрессии

Время на прочтение20 мин
Количество просмотров193K
Здравствуйте, коллеги! Это блог открытой русскоговорящей дата саентологической ложи. Нас уже легион, точнее 2500+ человек в слаке. За полтора года мы нагенерили 800к+ сообщений (ради этого слак выделил нам корпоративный аккаунт). Наши люди есть везде и, может, даже в вашей организации. Если вы интересуетесь машинным обучением, но по каким-то причинам не знаете про Open Data Science, то возможно вы в курсе мероприятий, которые организовывает сообщество. Самым масштабным из них является DataFest, который проходил недавно в офисе Mail.Ru Group, за два дня его посетило 1700 человек. Мы растем, наши ложи открываются в городах России, а также в Нью-Йорке, Дубае и даже во Львове, да, мы не воюем, а иногда даже и употребляем горячительные напитки вместе. И да, мы некоммерческая организация, наша цель — просвещение. Мы делаем все ради искусства. (пс: на фотографии вы можете наблюдать заседание ложи в одном из тайных храмов в Москве).

Мне выпала честь сделать первый пост, и я, пожалуй, отклонюсь от своей привычной нейросетевой тематики и сделаю пост о базовых понятиях машинного обучения на примере одной из самых простых и самых полезных моделей — линейной регрессии. Я буду использовать язык питон для демонстрации экспериментов и отрисовки графиков, все это вы с легкостью сможете повторить на своем компьютере. Поехали.
Читать дальше →
12 ...
10

Информация

Сайт
ods.ai
Дата регистрации
Дата основания
Численность
5 001–10 000 человек
Местоположение
Россия