Pull to refresh
5
Karma
0
Rating

Играемся с 3090 и пробуем MIG на A100

Reading time 11 min
Views 9.2K
Image processing *Machine learning *Computer hardware Video cards Natural Language Processing *


Каждый раз, когда встает заветный вопрос, апгрейдить ли карточки в серверной или нет, я просматриваю подобные статьи и смотрю такие видосы (нет, маркетинговым материалам от Nvidia конечно верить нельзя, как показал недавний кейс с числом CUDA-ядер).


Канал "Этот Компьютер" очень сильно недооценен, но автор не занимается ML. А в целом при анализе сравнений акселераторов для ML в глаза как правило бросаются несколько вещей:


  • Авторы учитывают как правило только "адекватность" для рынка новых карт в США;
  • Рейтинги далеки от народа и делаются на весьма стандартных сетках (что наверное в целом хорошо) без деталей;
  • Популярная мантра тренировать все более гигантские сетки вносит свои коррективы в сравнения;

Не нужно быть семи пядей во лбу, чтобы знать очевидный ответ на вопрос "а какая карта лучше?": карточки серии 20* в массы не пошли, 1080 Ti с Авито до сих очень привлекательны (и не особо дешевеют как ни странно, вероятно по этой причине).


Все это прекрасно и вряд ли стандартные бенчмарки сильно врут, но недавно я узнал про существование технологии Multi-Instance-GPU для видеокарт А100 и нативную поддержку TF32 и мне пришла идея поделиться своим опытом реального тестирования карточек на архитектуре Ampere (3090 и А100). В этой небольшой заметке я постараюсь ответить на вопросы:


  • Стоит ли свеч обновление на Ampere? (спойлер для нетерпеливых — да);
  • Стоят ли своих денег A100 (спойлер — в общем случае — нет);
  • Есть ли кейсы, когда A100 все-таки интересны (спойлер — да);
  • Полезна ли технология MIG (спойлер — да, но для инференса и для очень специфичных случаев для обучения);

За деталями прошу под кат.

Читать дальше →
Total votes 20: ↑20 and ↓0 +20
Comments 25

Information

Rating
Does not participate
Registered
Activity