Облако предлагает много возможностей для развития ИИ. С помощью облачных вычислений проще масштабировать ML-модели, повышать точность обучения и предоставлять данные удаленно пользователям. Однако масштабное развертывание ML-моделей требует понимания архитектуры нейронных сетей.
Один из важнейших инструментов машинного обучения — трансформеры. Популярность трансформеров взлетела до небес в связи с появлением больших языковых моделей вроде ChatGPT, GPT-4 и LLama. Эти модели созданы на основе трансформерной архитектуры и демонстрируют отличную производительность в понимании и синтезе естественных языков.
Хотя в сети уже есть хорошие статьи, в которых разобран принцип действия трансформеров, большинство материалов изобилует запутанными терминами. Мы подготовили перевод статьи, в которой без кода и сложной математики объясняют современную трансформерную архитектуру.