Pull to refresh
50
Karma
0
Rating
Андрей @S_A

Опытный пользователь ПК. Офисные пакеты.

Призрак AGI. Записки читателя Хабра

А вы дайте ребенку чёрную и белую коробки, и давайте складывать чёрные и белые шарики. Посмотрите на его реакцию, когда дадите ему красный :)

класс кстати достаточно искусственное понятие. как в человека есть пределы (контроля ситуации), так и у сеток могут быть полочки с очень большим запасом. да и на крайняк есть такая штука как деление отрезка на не заданное заранее число частей - можно прогнозировать сам номер класса, безо всяких OHE.

где-то промелькивала инфа, что за секунду человек глазами воспринимает 21 Гб. инфа не сотка, но масштаб я думаю больше даже. это к вопросу о запасах в полочках- несравнимо еще больше.

чернейший из всех ящиков

Призрак AGI. Записки читателя Хабра

я с вами солидарен.

  1. fit на новых данных, есть гипотеза (в книге у Гудфеллоу например), происходит во сне,

  2. обобщение есть всегда, только оно не всегда качественное. люди например тоже много в чем ошибаются.

в целом я не солидарен с гуманитариями, которые используют понятие интеллект как левая нога им в голову стукнет. я бы определял интеллект как "нахождение решения задач агента в среде". отличает человека от амебы (см. эволюционная эпистемология) в процессе errors and trials как раз наличие обучаемых репрезентаций, эмбеддингов. в частности естественный язык - это такая репрезентация.

то есть интеллект устроен как

"состояние среды: прошлое, настоящее, экстраполированное будущее" -> биологический алгоритм -> [веса] -> [репрезентация] -> [веса] -> [прогноз обновлённой среды] -> биологический алогритм -> действие -> ...

то что в квадратных скобках как раз интеллект, если его убрать, получим муху с рефлексами. обучение это рефлексия - бэкпроп, он всегда partial.

репрезентации позволяют коммуницировать. это необязательно слова - хоть танец пчел, хоть геометрические формы, многообразно.

теперь от пчел к решению задачи агента в среде методом автокодирования.

сила интеллекта (опыт, кругозор и типа всего этого) тем выше - чем ниже ошибка автокодировщика. а она тем ниже, чем круче эмбеддинг. решение задачи - это поиск в пространстве репрезентаций. интеллект математически - это пространство представлений состояний среды (состояние включает в себя динамику). вариант в пространстве состояний по запросу (ближайший по косинусу или другой метрике, или как query-key-value) - и есть ответ.

universe unsupervised by design )

Призрак AGI. Записки читателя Хабра

Вот уж точно, призрак. Спасибо. То, что вы описываете, немного выглядит как автоматическая машина для обучения нейросетей. Может даже графов из них.

Если нужно, чтобы алгоритм обучался - почему нет датасетов, где учат учиться? Предобучил учиться, а потом сама пусть учится на практике. Только на практике reward is enough - обучение с подкреплением уже вполне развито.

И кстати претензия что сеть, полученная на кошках и собаках, сломается на попугаях - такую же можно и человек предъявить: интегралы и дифференциалы какой-нибудь человек скажем считать умеет, а как оперировать почки - не знает. Для человека это нормально, а сетки почему-то неполноценны из этого (несправедливо).

К AGI через самоорганизацию и структурную адаптацию

Согласен, кстати это не противоречит тому что я написал. Кроме физики есть системы еще, которые и на новую математику поправки делать начинают, "мир" меняется постоянно. Поэтому чтобы оставаться на месте, нужно постоянно бежать :)

К AGI через самоорганизацию и структурную адаптацию

Математика - универсальный язык описания наблюдений. И, в частности, из-за своего универсализма, он гораздо богаче отдельно взятых явлений и/или процессов.

Про реальность все додумки лишние, вязкая философия.

То что математика инструментальна сомнений у инженеров не вызывает. Сомневаются только те, кто не применяет (каждый день). Гуманитарии например.

Прогнозы (если обсуждать что) не всегда сбываются - это часто проблема концептуальных моделей, в которых учтено лишь то что учтено (все хотят интепретируемости, но это далеко не всегда возможно).

skip connections и симметрия

Перестановочные симметрии как факт были подмечены +/- давно. Skip Connections делает лосс более гладким, особенно в случае ступенчатых активаций, но главное - не таким резким по ландшафту.

Перестановочные симметрии приводят к избыточности параметрического пространства, и skip connection тоже регуляризация, как и dropout, который это пространство нарезает на подпространства.

Я сейчас к тому, что все так, да. И еще...

Эффект хорошей генерализации, как мне видится, имеет такую причину. Регуляризация от skip connections, в отличие от енкодеров-декодеров, или просто сужающихся сеток, является некоторым аналогом, простите, бустинга, который как известно, тоже аппроксиматор. То есть с каждым стэком инпут дополняется информацией, а не просто интерпретируется в подбираемом латентном пространстве. Подбирается дополнительное пространство к инпуту, как если бы человек говорил "на этой картине изображены Петька и Василий Иванович", а не просто "здесь Петька, а здесь Василий Иванович". И генерализация обуславливается тем, что к концу сетки мы не потеряли информацию о том, что это картина всё-таки (например). у Гудфедлоу это называется медленный признак.

Дискусионно все это конечно... извините за простыню текста.

Марксизм в работе управленца: ЛПР и интересы собственников

открою "секрет" как бороться с заказчиками, которым всегда мало.

  1. прейскурант (в терминах социализма) на базовые коробочные решения при удовлетворении требованиям к харду,

  2. почасовая (подневная) оплата за все что сверху. хочешь быстрее - плати больше,

  3. баги конкретно разработчика (именно баги) год правятся бесплатно.

    отрезвляет и подрядчиков, и заказчиков.

OCR за час? — Не думаю

Рассмотрите для полноты mmocr.

У меня в проде чудеса показывает. Не за час, но и домен посложнее. Сразу пробуйте топовые модели оттуда. Например detector DRRG + recognizer SAR

«Эволюция против муравьёв» сравниваем алгоритмы оптимизации

Хорошо что вытащили алгоритмы из тьмы на свет, но если их сравнивать - некоторые модификации муравьиного имеют сходимость к глобальному оптимуму (время правда не оценить особо), у генетики такого свойства нет. Но генетику для более широкого круга задач адаптировать проще, да.

Сага о моделировании бизнес-процессов на базе конечного автомата (fsm)

Возможно вы в курсе, но нынче баловаться принято проворачиванием фарша в обратную сторону, process mining, когда граф переходов (и шанс направления) восстанавливают из данных

Что реально происходит в предиктивной аналитике на производствах?

чем проще датчик, тем он надежнее... предобработка сегодня одна нужна, завтра другая.

и беспроводных датчиков немного в общем числе.

автору спасибо за статью. хорошая мысль про физмодель в параллели с сеткой. я делал несколько иначе - сопрягал физмодель с коэффициентами и дополнительными слоями, а дальше их бэкпропом и оптимизацией по найденному

gamio. Русскоязычное текстовое приключение с GPT2

меня еще быстрее :) угарная штука!

RuCLIP tiny — быстрее, чем вы думаете

достаточно аккаунта google. вводите zip code 03222. или иной из списка no tax. Россия где-то тоже была в списке доступов, так что это не хак (а лайфхак).

p.s. отписаться можно на pay.google.com

Почему при разработке ИИ главное — это данные

Интересно есть ли можно ли надежно понять, что модель плохо учится не из-за криворукой разметки данных, а потому что изначально данные гетерогенные по лейблам?

знал бы прикуп, жил бы в Сочи)) считайте, если достаточно толстая двух-трехслойная нейросеть без переобучения даёт какую-то метрику, если нет каких-то проблем с предобработками и дефектами в коде... больше не выжмете из данных.

Думаю вам знаком датасет breast cancer. что там можно выжать больше, чем выжали?.. а да наверное ничего.

ну и мой коммент ниже, про неустранимую ошибку, так же в силе...

Почему при разработке ИИ главное — это данные

а) кластеризовывать со своей метрикой и смотреть статистику кластеров, в том числе по признакам. кластеры (и расстояния до центроид) можно подавать в классификаторы,

б) интерпретировать модели локально (то есть смотреть что дало вклад в конкретный предикт, shap values например), и смотреть как группируются интерпретации в датасете. объявлять группы чем-то различным.

это все достаточно искусственно. то что вы описали текстом - то что различает эти самые единицы - и есть хорошие разделяющие фичи. так что может сначала научиться выделять их наличие/различие... а там дальше стэкинг.

но я с мед. данными не работал, так что все это навскидку.

Почему при разработке ИИ главное — это данные

Искать разделяющую фичу... может синтетически как-то, если даже медицине она неизвестна. На правах гипотезы.

Почему при разработке ИИ главное — это данные

У моделей есть не просто да/нет, а некоторое "подобие" вероятности (можно калибровать).

Так вот сэмплы, где модель на грани сомнения, не мешает подвергать пристальному взгляду. Но это имеет смысл для не переобученных (overfitted) моделей.

Еще, на Хабре была статья про разные распределения трэйна и теста. Есть также "просто" поиск аномалий, который разными способами проверяет на соответствие распределению (local outlier factor например).

И предложенный метод тоже применялся и для imagenet вроде, уже не вспомню статью. Докинуло скора после переразметки.

Но есть проблематичное с этим подходом в том, что если в природе существует ненулевая вероятность ошибки, то есть шанс не отличить собаку от кошки, то ошибка модели будет не нулевой, и можно пропустить все же плохие сэмплы (и кроссвалидация не отработает). Особенно на малых датасетах. А миллионные учить долго, особенно с leave one out (проверять на N+1 отложенном сэмпле). Если есть еще и дисбаланс в датасете, то еще сложнее будет ловить отличия моделью.

В итоге, все классификаторы не дотягивают до идеального, да и тот работает с ошибкой (на не детерминированных данных).

Как сообщить, что вы всё уронили: шаблон действий в ситуации, когда всё пошло не по плану

спасибо, что подняли тему. действительно, уведомление и эскалация (критичных) инцидентов тема полезная. и правда да, в том что не стоит в таких ситуациях "расшаркиваться", нужно "что", "что делать", "когда придет в порядок". все остальное постфактум.

Почему я изменил своё мнение о слабой разметке для ML

Да, смысл-то понятен. Но в целом, это близко к синтетике на мой взгляд.

Хотя и лучше нее, хотя бы тем что данные уже сами по себе ближе к решению.

Почему я изменил своё мнение о слабой разметке для ML

Другое название для синтетики и/или аугментации?

Information

Rating
Does not participate
Location
Россия
Date of birth
Registered
Activity