Есть много статей, объясняющих, для чего нужен Python GIL (The Global Interpreter Lock) (я подразумеваю CPython). Если вкратце, то GIL не даёт многопоточному чистому коду на Python использовать несколько ядер процессора.
Однако мы в Vaex исполняем большинство задач с интенсивными вычислениями на С++ с отключением GIL. Это нормальная практика для высокопроизводительных Python—библиотек, в которых Python всего лишь выступает в роли высокоуровневого связующего звена.
GIL нужно отключать явно, и это ответственность программиста, о которой он может забыть, что приведёт к неэффективному использованию мощностей. Недавно я сам побывал в роли забывшего, и нашёл подобную проблему в
Apache Arrow (это зависимость Vaex, так что когда GIL не отключается в Arrow, мы (и все остальные) сталкиваемся с падением производительности).
Кроме того, при исполнении на 64 ядрах производительность Vaex иногда далека от идеала. Возможно, он использует 4000 % процессора вместо 6400 %, что меня не устраивает. Вместо того, чтобы наугад вставлять выключатели для изучения этого эффекта, я хочу разобраться в происходящем, и если проблема в GIL, то хочу понять, почему и как он тормозит Vaex.