Такие схемы последние лет двадцать делают на таймере 555. Можно было сделать на нем. Как вариант, можно было бы на одной части сдвоенного ОУ собрать генератор ШИМ, а на второй — компаратор.
Первый вариант нашего регулятора был как раз на сдвоенном ОУ, когда на холостом ходу подавались с мультивибратора прямоугольные импульсы фиксированной частоты и скважности, а при достижении порога включения рабочего хода компаратор через монтажное ИЛИ открывал ключ, пока ток не упадёт до холостого. Но у такой версии никакой стабилизации, никаких защит, зависимость от напряжения питания. Потому в серию прототип не пошёл, хотя действует, и активно использовался до тех пор, пока не разработали описанный в статье.
Критика — это очень здорово и нужно. Можно создать более энергоэффективный вариант, с меньшими потерями на шунтах и ключах, реверсом, регулируемой стабилизацией оборотов рабочего хода, даже активное противозастревание сверла добавить. Но это уже будет дороже, возможно, труднее паять, при сохранении компактности, и не факт, что нужно для большинства микродрелей и сверлильных станочков. Как бы то ни было, чем больше вариантов и творчества, тем лучше!
подавать туда аналоговый уровень для линейной установки коэффициента заполнения ШИМ на выходе — крайне неоптимальное решение.
Микросхема регулирует коэффицент заполнения так, чтобы поддерживать на ноге 5 напряжение, равное опорному (номинально 1.25В). Что означает ток 1.25 мА через R5. Когда выход компаратора U2B в состоянии низкого уровня, влияние на делитель ОС с R6 отсутствует, и схема стабилизирует напряжение на двигателе (плюс рабочем шунте, падение на котором вносит допустимую ошибку). Когда выход U2B поднимается до высокого уровня (ном. 9В минус падение на выходном буфере), в R1 втекает дополнительный ток, и напряжение на моторе для достижения 1.25В на входе ОС контроллера нужно уже меньшее. Какое именно, подстраивается с помощью RV1.
Таким образом, усилитель сигнала рабочего шунта и компаратор не являются частью обратной связи, но влияют на неё током смещения, когда необходимо задать холостой ход.
Получается, с нашим регулятором один и тот же моторчик может работать от источников питания с разными напряжениями, при этом настройки никуда не плывут, (если входное напряжение не чрезмерно низкое, но это нештатный случай).
Если делать более продвинутое устройство минигравёр, тогда да. Минидрели, учитывая небольшую мощность его движка, достаточно двух режимов, холостого и рабочего.
Сравните, что нарисовано у вас, и как их рекомендуют включать в даташите на MC34063
Лучшим выбором были бы обычные электролитические конденсаторы в SMD-исполнении
У нас получилось компактно и доступно, в том числе для сборки начинающими любителями. В одних применениях нужно учитывать всё, что Вы перечислили, в других не следует забывать, но можно сознательно пренебречь.
Для такой продвинутой версии напрашивается микроконтроллер, либо создание спецмикросхемы, (если хотим уложиться в габариты). Хотя можно просто сделать диапазон регулировки R6 и установить малюсенький тумблер. А можно и мост для реверса и регулировки.
По себе и рассказам многих коллег знаю: трассировать в САПР гораздо быстрее, чем при макетировании с паяльником на макетке. И получаем в результате, как минимум, шаг к годному для повторения изделию. Излюбленные способы технического творчества у каждого свои, спорить грешно, но поделиться вариантами сто́ит.
Автомат оборотов задумывался как приставка к Буратору, но прекрасно работает и с ручной минидрелью, причём получается очень опрятно и удобно. Малюсенькая лёгонькая платка с переходным пластиковым кольцом, винтовые зажимы для питающего провода устраняют ещё одну болезнь «народных» бескорпусных микродрелей — отлом в местах пайки к ламелям моторчика.
Если напряжение питания не ниже номинального напряжения двигателя плюс падение на встроенном ключе MC34063, схема подаёт двигателю полное номинальное напряжение, а его ток ограничивает по условию непревышения потребляемого извне тока. Т.е. значительной потери мощности не происходит, в отличие от схем с линейными регуляторами. У нас силовой транзистор в ключевом режиме: либо насыщение, либо закрыт. В этом достоинство импульсных регуляторов.
Схема очень распространённая, греется, требует настройки, в т.ч. компенсации ПОС, под конкретный источник питания и двигатель, работает, по отзывам, не со всеми двигателями.
Опять же, для помехоподавления имеет смысл поставить конденсатор на 10… 100 нФ параллельно двигателю.
У нас параллельно двигателю, только через рабочий шунт, стоит D1, отправляющий энергию самоиндукции обратно в двигатель, служа не просто защитой схемы, а нижним силовым ключом понижающего преобразователя. В дополнительном снаббере для маленькой дрельки нет необходимости.
R1 — R3. Зачем они? Если это была попытка использовать встроенную защиту MC34063, то они включены неверно
В чём состоит неверность? Защита данного решения не абсолютна. При значительной (более чем вдвое) разнице напряжений питания контроллера и двигателя в сочетании с большой нагрузкой на вал, ток через нижний ключ D1 может стать неприемлемым для последнего. В таком случае, следует скорректировать защитный шунт, установив всего 2 или даже 1 резистор из набора вместо трёх.
Стабилизатор для LM358 можно было не ставить.
Напряжение питаниия ОУ в данной схеме должно быть стабилизированным, чтобы нормировать смещение через RV1 на делитель ОС по выходному напряжению R6R5. Также стабилизатор служит опорой для порога переключения с холостого хода на рабочий. Можно было это реализовать и стабилитроном, а можно L78L09.
Что правда стоило бы поставить, так это развязывающие конденсаторы по 100 нФ для MC34063 и LM358 (по питанию)
Все конденсаторы в наборе керамические, платка крохотная, вполне хватает минимально имеющегося числа.
Верно, предельный ток 1.5А, исходя из чего и был выбран номинал защитного шунта для создания запаса надёжности. Потребление зависит от диаметра сверла, скорости подачи, обрабатываемого материала.
Когда позиционируем сверло, держа микродрель в руке или двигая плату на столике станка, обороты должны быть минимальными, но не нулевыми, иначе пусковой рывок помешает позиционированию и может привести к повреждению участка платы. Как только сверло попало в керн, нужно давать максимальные обороты, на которых сверление не только максимально быстрое, но и наиболее чистое, (если у сверла правильная заточка). Когда прошли глубину, тормозящий момент снова упал, и контроллер отрабатывает переход на холостые обороты с небольшой задержкой, чтобы сверло не застряло при вытаскивании. Так можно быстро, качественно и радостно просверлить все отверстия.
Схема ограничивает обороты холостого хода, а ещё ограничивает потребляемый ток на уровне 1А, чтобы не сжечь мотор, регулятор, БП и т.д. при застревании сверла. А обороты микродрели зачем стабилизировать? Нужен разумный максимум, чтобы быстро и качественно просверлить.
Часто можно и подождать, а иногда лучше быстрее. Иметь средства быстрого прототипирования на месте не помешает. Кстати, этот регулятор и с борами вместо сверла хорошо работает, когда работа очень тонкая.
Первый вариант нашего регулятора был как раз на сдвоенном ОУ, когда на холостом ходу подавались с мультивибратора прямоугольные импульсы фиксированной частоты и скважности, а при достижении порога включения рабочего хода компаратор через монтажное ИЛИ открывал ключ, пока ток не упадёт до холостого. Но у такой версии никакой стабилизации, никаких защит, зависимость от напряжения питания. Потому в серию прототип не пошёл, хотя действует, и активно использовался до тех пор, пока не разработали описанный в статье.
Микросхема регулирует коэффицент заполнения так, чтобы поддерживать на ноге 5 напряжение, равное опорному (номинально 1.25В). Что означает ток 1.25 мА через R5. Когда выход компаратора U2B в состоянии низкого уровня, влияние на делитель ОС с R6 отсутствует, и схема стабилизирует напряжение на двигателе (плюс рабочем шунте, падение на котором вносит допустимую ошибку). Когда выход U2B поднимается до высокого уровня (ном. 9В минус падение на выходном буфере), в R1 втекает дополнительный ток, и напряжение на моторе для достижения 1.25В на входе ОС контроллера нужно уже меньшее. Какое именно, подстраивается с помощью RV1.
Таким образом, усилитель сигнала рабочего шунта и компаратор не являются частью обратной связи, но влияют на неё током смещения, когда необходимо задать холостой ход.
Получается, с нашим регулятором один и тот же моторчик может работать от источников питания с разными напряжениями, при этом настройки никуда не плывут, (если входное напряжение не чрезмерно низкое, но это нештатный случай).
У нас получилось компактно и доступно, в том числе для сборки начинающими любителями. В одних применениях нужно учитывать всё, что Вы перечислили, в других не следует забывать, но можно сознательно пренебречь.
У нас параллельно двигателю, только через рабочий шунт, стоит D1, отправляющий энергию самоиндукции обратно в двигатель, служа не просто защитой схемы, а нижним силовым ключом понижающего преобразователя. В дополнительном снаббере для маленькой дрельки нет необходимости.
В чём состоит неверность? Защита данного решения не абсолютна. При значительной (более чем вдвое) разнице напряжений питания контроллера и двигателя в сочетании с большой нагрузкой на вал, ток через нижний ключ D1 может стать неприемлемым для последнего. В таком случае, следует скорректировать защитный шунт, установив всего 2 или даже 1 резистор из набора вместо трёх.
Напряжение питаниия ОУ в данной схеме должно быть стабилизированным, чтобы нормировать смещение через RV1 на делитель ОС по выходному напряжению R6R5. Также стабилизатор служит опорой для порога переключения с холостого хода на рабочий. Можно было это реализовать и стабилитроном, а можно L78L09.
Все конденсаторы в наборе керамические, платка крохотная, вполне хватает минимально имеющегося числа.