Теория сложности на простых примерах
5 мин
Задайтесь вопросом «ГДЕ?». Где находится центр управления движением галактик или поведением циклона? Где та сила, что объединяет атомы в сложные соединения, те в свою очередь — в цепочки белков, и порождает такие устойчивые и сложные явления как биологическая жизнь, разум, социум.
Под зонтиком теории сложности объединены разнообразные модели, которые описывают, как без центрального контроля из взаимодействия простых начальных элементов, подчиняющихся простым правилам, образуются явления более высокого порядка, обладающие сложно предсказуемым поведением и непредвиденными, но устойчивыми, свойствами.
Статья не предлагает готовых ответов о смысле жизни, сквозит грубыми нестрогими аналогиями, но при этом имеет дерзкую цель расширить кругозор читателя, опираясь на его воображение и некоторые математические факты.
Под зонтиком теории сложности объединены разнообразные модели, которые описывают, как без центрального контроля из взаимодействия простых начальных элементов, подчиняющихся простым правилам, образуются явления более высокого порядка, обладающие сложно предсказуемым поведением и непредвиденными, но устойчивыми, свойствами.
Статья не предлагает готовых ответов о смысле жизни, сквозит грубыми нестрогими аналогиями, но при этом имеет дерзкую цель расширить кругозор читателя, опираясь на его воображение и некоторые математические факты.












Многие в общих чертах представляют, как работает обратная лучевая трассировка: через каждый пиксель окна вывода алгоритм пропускает луч и вычисляет, с какими объектами сцены он пересекается и как в результате данный пиксель должен быть освещён. Алгоритм по сути требует, чтобы у нас была функция, которая для каждой позиции возвращает цвет точки. Разумеется, тот же подход можно применять не только для трёхмерной графики: любое изображение можно растеризовать таким образом, если у нас есть подходящая функция. Рассмотрим для примера, как с помощью такого подхода решить задачу визуализации 
