
К моему удивлению, в открытом доступе оказалось не так уж много подробных и понятных объяснений того как работает модель GPT от OpenAI. Поэтому я решил всё взять в свои руки и написать этот туториал.
User
К моему удивлению, в открытом доступе оказалось не так уж много подробных и понятных объяснений того как работает модель GPT от OpenAI. Поэтому я решил всё взять в свои руки и написать этот туториал.
Прошедший 2021-й год ознаменовался настоящей революцией в области компьютерного зрения.
Трансформеры, подобно новым штамма Ковида, вытеснившие конкурентов в области обработки естественного языка (NLP) и задачах, связанных с обработкой звука, добрались и до компьютерного зрения.
Сверточные сети, чье место на Олимпе в различных бенчмарках компьютерного зрения и первые места в топах на PapersWithCode казались незыблемы (в том смысле, что против лома нет приема, если нет другого лома) были сброшены с них рядом архитектур частично или полностью основанных на механизме внимания.
В данном обзоре я хотел бы рассказать о нескольких самых ярких прорывах и идеях в совершенствовании архитектур и обучении ViT-ов (Visual Transformers).
Minecraft, самая продаваемая игра в мире, наиболее известная своими пикселизированными блоками и бесконечными мирами, содержит потрясающий процедурный генератор ландшафта — с пещерами, водоёмами, и даже различными биомами.
Процедурная генерация является важной частью компьютерной графики — она используется в основном в играх и в фильмах. Она помогает создавать случайные структуры, не вызывающие ощущения «машинного» стиля.
Также процедурная генерация играет важную роль в машинном обучении. Она позволяет генерировать такие данные, которые сложно собрать. Обучение моделей машинного обучения требует огромных датасетов, которые может быть затруднительно собирать и подготавливать. Генерацию данных процедурным образом можно легко адаптировать к требуемому типу данных.
В детстве мне нравилось играть в Minecraft, и мне всегда было интересно, как эта игра генерирует бесконечные миры. В данной я статье я попытаюсь воссоздать это на Python.
Прим. переводчика. Осторожно, в статье много иллюстраций (в том числе анимированных)
В конце июня прошла CVPR 2021 – одна из самых значимых конференций в области компьютерного зрения. Наибольшее число докладов было посвящено теме 3D компьютерного зрения. Наша команда Twin3d посетила конференцию и в рамках нашего обзора мы покроем последние тренды в академии, связанные с 3D-реконструкцией и виртуальными нейронными аватарами, расскажем о преимуществах и недостатках различных подходов к нейронному рендерингу, а также постараемся покрыть потенциальные применения этих передовых технологий.
Привет, Хабр. Меня зовут Саша Готманов, я руковожу группой нейросетевых технологий в поиске Яндекса. Сегодня на YaC 2020 мы впервые рассказали о внедрении трансформера — новой нейросетевой архитектуры для ранжирования веб-страниц. Это наиболее значимое событие в нашем поиске за последние 10 лет.
Сегодня я расскажу читателям Хабра, в чём заключается иллюзия «поиска по смыслу», какой путь прошли алгоритмы и нейросети в ранжировании и какие основные сложности стоят перед теми, кто хочет применить для этой задачи трансформеры и даже заставить их работать в рантайме.
Распознаванием лиц в 2018 году никого не удивишь – каждый студент, может, даже школьник, его делал. Но всё становится немного сложнее, когда у вас не датасет на 1 млн пользователей, а:
В этой статье мы поделимся опытом разработки и запуска системы распознавания лиц на пользовательских фотографиях в социальной сети Одноклассники и расскажем про все ”от А до Я”:
Information